Sujet de révision n°8

Exercice 1:

Dans l'espace muni d'un repère orthonormé direct $\left(o,\vec{i},\vec{j},\vec{k}\right)$; On considère les points A(3;-2;2) et B(-1;6;4) et C(5;4;4) ; et la sphère (S) dont A(3;-2;4) est un diamètre .

- 1- a) Montrer que le centre de la sphère est $\Omega(1;2;3)$ et son rayon est $R=\sqrt{21}$.
 - b) Donner une équation cartésienne de la sphère (S).
- 2- a) Vérifier que $C \in (S)$.
 - b) Déterminer une équation cartésienne du pan (P) tangent à (S) au point C
- 3- Soit la droite (Δ) de représentation paramétrique :

$$(\Delta): \begin{cases} x = 4 + t \\ y = 3 \\ z = 2 + 3t \end{cases} \quad (t \in IR)$$

- a) Montrer que la distance de Ω à la droite (Δ) est égale à $\sqrt{11}$.
- b) Déterminer l'intersection de la droite (Δ) et la sphère (S).

Exercice 2:

Une urne contient 7 boules (2 Vertes ,3 Rouges et 2 blanches) indiscernables au toucher. On tire au hasard simultanément deux boules de l'urne .

- 1- On considère les deux événements suivants :
 - A « Les deux boules tirées sont de la même couleur ».
 - B « Parmi les deux boules tirées il y'a au moins une boule Rouge».
 - a) Montrer que la probabilité de l'événement A est $p(A) = \frac{5}{21}$
 - b) Calculer la probabilité de l'événement B .
 - c) Montrer que $p(A \cap B) = \frac{1}{7}$
 - d) Est-ce que les deux événements A et B sont indépendantes ? justifier votre réponse .
- 2- Soit X la variable aléatoire qui à chaque tirage de deux boules associe le nombre de boules Rouges tirées.
 - a) Copier et compléter le tableau ci-dessous

x_i	0	1	2
$p(X=x_i)$			

b) Calculer E(X) l'espérance mathématique de X .

Exercice 3:

- 1- Déterminer les réels a et b tel que : $\left(\forall x \in \left[0; \frac{\pi}{4}\right]\right) \frac{1}{\cos x} = \frac{a \cos x}{1 \sin x} + \frac{b \cos x}{1 + \sin x}$.
- 2- Déduire la valeur de l'intégrale : $I = \int_0^{\frac{\pi}{4}} \frac{1}{\cos x} dx$.

$\stackrel{\triangle}{=}$ \vdots $\stackrel{\triangle}{:}$ $\stackrel{\triangle}{:}$

Exercice 4:

Dans le plan complexe, muni d'un repère orthonormé $\left(o,\vec{u},\vec{v}\right)$, on considère les points A , B et Ω d'affixes respectifs a=-2i , b=2+2i et $\omega=3-i$.

- 1- Ecrire les complexes a et b sous forme trigonométrique.
- 2- On considère la rotation R de centre Ω est d'angle $\theta=-\frac{\pi}{2}$. Et soit z' l'affixe du point M' image du point M d'affixe z.
 - a) Montrer que : z' = -iz + 4 + 2i
 - b) Vérifier que le point B est l'image du point A par la rotation R ; puis déduire la nature du triangle ΩAB .

Problème :

Partie 1

Soit f la fonction définie sur $]-1;+\infty[$ par : $f(x)=x\ln(1+x)$

Et (C_f) sa courbe dans un repère orthonormé $(o; \vec{i}; \vec{j})$

- 1- Calculer $\lim_{x\to +\infty} f(x)$ et montrer que : $\lim_{x\to -1^+} f(x) = +\infty$.
- 2- Etudier les branches infinies de (C_f) .
- 3- a) Montrer que : $(\forall x \in]-1;+\infty[)$ $f'(x) = \frac{x}{x+1} + \ln(1+x)$.
 - b) Dresser le tableau de variation de f.
- 4- Déterminer l'équation de la tangente (T) à (C_f) au point d'abscisse (e-1).
- 5- Etudier la dérivabilité de f à droite de (-1) ; Donner une interprétation géométrique au résultat .
- 6- Construire la courbe (C_f) et la tangente (T) dans le même repère orthonormé $(o;\vec{i};\vec{j})$.

On prend
$$\ln 2 \approx 0.7$$
; $\frac{1}{\sqrt{e}} \approx 0.6$ et $\frac{1}{e} \approx 0.4$.

Partie 2

On considère la suite (U_n) définie par : $U_0 = 1$ et $U_{n+1} = U_n \ln(1 + U_n)$.

- 1- Montrer que : $(\forall n \in IN)$ $0 \le U_n \le -1 + e$.
- 2- Montrer que la suite (U_n) est décroissante.
- 3- Déduire que la suite (U_n) est convergente et calculer $\lim_{n\to+\infty} U_n$.