

Exercice « fonction logarithmique »

2éme Bac SM

Soit la fonction f définie sur
$$]-\infty;-1[\ \cup\]0;+\infty[\ par:\ \begin{cases} f(x)=x\ln\left(1+\frac{1}{x}\right) & si\ x\neq 0\\ f(0)=0 \end{cases}$$

On désigne par $\left(C_{_f}
ight)$ la suite représentative de f dans un repère orthonormé $\left(O;ec{i}\,;ec{j}
ight)$

Partie A:

- 1. a) Montrer que f est continue à droite en 0
 - b) Etudier la dérivabilité de f à droite en 0
- 2. Calculer $\lim_{x \to -\infty} f(x)$; $\lim_{x \to -1^{-}} f(x)$ et $\lim_{x \to +\infty} f(x)$
- 3. Calculer f'(x) et étudier le sens de variation de f; puis dresser son tableau de variation
- 4. Tracer la courbe (C_f) dans le repère $(O; \vec{i}; \vec{j})$.

Partie B :

On considère la fonction g telle que : g(x) = f(-1-x)

- 1. Déterminer le domaine de définition de g
- 2. montrer que les courbes de g et f sont symétrique par apport à Δ ; la droite dont on précisera une équation
- 3. a) Montrer que : $(\forall n \in \mathbb{N}^*)$; f(n) < 1 < g(n)
 - b) En déduire que : $\left(\forall n \in \mathbb{N}^*\right)$; $\left(1 + \frac{1}{n}\right)^n < e < \left(1 + \frac{1}{n}\right)^{n+1}$