

Problème étude de fonction In

2éme Bac SM

Soit f la fonction numérique définie sur l'intervalle $I =]0; +\infty[$ par : $f(x) = x - \frac{\ln x}{x}$

 (ζ) la courbe représentative de f dans un repère orthonormé $(O; \vec{i}; \vec{j})$ tel que $||\vec{i}|| = ||\vec{j}|| = 1cm$. (la partie II est liée à la fonction f de cette partie)

PARTIE I

- 1- a) Calculer $\lim_{x\to 0^+} f(x)$ et interpréter graphiquement le résultat obtenu.
 - b) Calculer $\lim_{x \to +\infty} f(x)$ et montrer que la droite (Δ) d'équation y = x est une asymptote oblique à (ζ) .
 - c) Etudier la position relative de (ζ) et la droite (Δ) .
- 2- On pose : $(\forall x \in I)$; $g(x) = x^2 1 + \ln(x)$
 - a) Vérifier que : $(\forall x \in]0;1[)$; g(x) < 0 et $(\forall x \in]1;+\infty[)$; g(x) > 0.
 - b) Montrer f que est dérivable sur I et que : $(\forall x \in I)$; $f'(x) = \frac{g(x)}{x^2}$; puis dresser le tableau de variations de f.
 - c) Vérifier que : $(\forall x \in I)$; $f''(x) = \frac{3 2\ln(x)}{x^3}$ puis étudier la concavité de (ζ) en précisant son point d'inflexion.
 - d) Tracer (ζ) . (On donne $e^{\frac{3}{2}} = e\sqrt{e} \simeq 4,5$ et $f^{\left(\frac{3}{e^{\frac{3}{2}}}\right)} \simeq 4$)

PARTIE II (Les paragraphes 1, 2 et 3 sont indépendants

- 1- On considère la suite numérique $(u_n)_{n\in\mathbb{N}}$ définie par : $\begin{cases} u_0=2\\ u_{n+1}=f\left(u_n\right) & \left(\forall n\in\mathbb{N}\right) \end{cases}.$
 - a) Montrer que : $\left(\forall n \in \mathbb{N} \right)$; $1 < u_n \le 2$
 - b) Etudier la monotonie de la suite $\left(u_{_{n}}\right)_{n\in\mathbb{N}}$.
 - c) On pose $a = \frac{3 + \ln 2}{4}$ Montrer que $(\forall x \in]1;2]$; $0 < f'(x) \le a$.
 - d) Montrer que : $(\forall n \in \mathbb{N})$; $0 < u_{n+1} 1 \le a \ (u_n 1)$; puis que $(\forall n \in \mathbb{N})$; $0 < u_n 1 \le a^n (u_0 1)$
 - e) Déduire des questions précédentes que la suite $(u_n)_{n\in\mathbb{N}}$ est convergente et calculer sa limite .
 - f) Déterminer la plus petite valeur de n pour que 1 soit une valeur approchée de u_n à 10^{-2} prés.
- 2- n est un entier naturel non nul et on considère dans l'intervalle]0;1[l'équation $(E_n):f(x)=x+\frac{1}{n}$.

On pose: $(\forall x \in]0;1[)$; $g_n(x) = x + n \ln(x)$

- a) Montrer que l'équation (E_n) est équivalente à l'équation $g_n(x) = 0$.
- b) Montrer que l'équation $(E_{\scriptscriptstyle n})$ admet un solution unique $lpha_{\scriptscriptstyle n}$ dans]0;1[
- c) Etudier la monotonie de la suite $\left(\alpha_{\scriptscriptstyle n}\right)_{\scriptscriptstyle n\geq 1}$
- d) Montrer que la suite $\left(\alpha_n\right)_{n\geq 1}$ est convergente et que $\lim_{n\to +\infty}\alpha_n=1$

 $\text{3- On pose}: \left(\forall n \in \mathrm{I\!I\!N}^* \; \right) \; ; \; S_n = \sum_{k=1}^n f\left(k\right) \; \mathrm{et} \; \left(\forall n \in \mathrm{I\!I\!N}^* \; - \left\{1\right\} \right) \; ; \; P_n = \frac{e^2}{\sqrt{2}} \times \frac{e^3}{\sqrt[3]{3}} \times \frac{e^4}{\sqrt[4]{4}} \times \ldots \times \frac{e^n}{\sqrt[n]{n}} = \prod_{k=2}^n \frac{e^k}{\sqrt[k]{k}} \; . \ldots \times \frac{e^n}{\sqrt[n]{n}} = \prod_{k=2}^n \frac{e^k}{\sqrt[k]{k}} \; \ldots \times \frac{e^n}{\sqrt[n]{n}} = \prod_{k=2}^n \frac{e^k}{\sqrt[k]{k}} \; \ldots \times \frac{e^n}{\sqrt[n]{n}} = \prod_{k=2}^n \frac{e^k}{\sqrt[k]{k}} \; \ldots \times \frac{e^n}{\sqrt[n]{n}} = \prod_{k=2}^n \frac{e^k}{\sqrt[k]{n}} \; \ldots \times \frac{e^n}{\sqrt[n]{n}} = \prod_{k=2}^n \frac{e^k}{\sqrt[n]{n}} = \prod_{k=2}^n \frac{e^k}{\sqrt[n]{n}} \; \ldots \times \frac{e^n}{\sqrt[n]{n}} = \prod_{k=2}^n \frac{e^k}{\sqrt[n]{n}} \; \ldots \times \frac{e^n}{\sqrt[n]{n}} = \prod_{k=2}^n \frac{e^k}{\sqrt[n]{n}} = \prod_{k=2$

a) Montrer que : $\Big(\forall n \in {\rm I\!I\!N}^* \ - \big\{1\big\} \Big)$; $\ln \Big(P_n\Big) = S_n - 1$.

b) Montrer que : $S_n \geq n$; puis calculer $\lim_{n \to +\infty} \ln \left(P_n \right)$.

<u>www.guessmaths.co</u> <u>E-mail</u>: <u>abdelaliguessouma@gmail.com</u> <u>whatsapp</u>: 060448889