1. 1. Qcm

Cet exercice comporte quatre affirmations repérées par les lettres a, b, c et d.

Vous devez indiquer pour chacune de ces affirmations, si elle est vraie (V) où fausse (F). Aucune justification n'est demandée.

Le plan complexe est menu d'un repère orthonormé $(O; \vec{u}; \vec{v})$.

On considère les points A, B, C et D d'affixes respectives a, b, c et d :

$$a = -2 - 2i$$
; $b = 2$; $c = 2 + 4i$ et $d = -2 + 2i$.

- a. ABCD est un parallélogramme
- **b.** Le point E, image de C par la rotation de centre B et d'angle $-\frac{\pi}{2}$, est un point de l'axe des abscisses.
- c. Soient f = -4 + 6i et F le point d'affixe f. Le triangle CDF est rectangle -isocèle en D.
- d. Soient g = -2i et G le point d'affixe g. Le triangle CDG est rectangle et isocèle en C.

1. 2. Qcm

Pour chacune des quatre questions de ce QCM, une seule des quatre propositions est exacte. Aucune justification n'est demandée.

1. Dans le plan complexe menu d'un repère orthonormé $(O; \vec{u}; \vec{v})$, on donne les points A, B et C d'affixes respectives -2+3i; -3-i et 2,08+1,98i.

Le triangle ABC est :

- a) isocèle et non rectangle
- c) rectangle et isocèle
- b) rectangle et non isocèle
- d) ni rectangle ni isocèle
- 2. À tout nombre complexe $z \neq -2$, on associe le nombre complexe z' défini par : $z' = \frac{z-4i}{z+2}$

L'ensemble des points M d'affixe z tels que |z'| = 1 est :

- a) un cercle de rayon1.
- b) une droite.
- c) une droite privée d'un point.
- d) un cercle privé d'un point.
- 3. Les notations sont les mêmes qu'à la question 2.

L'ensemble des points M d'affixe z tels que z'est un réel est :

- a) un cercle.
- c) une droite privée d'un point.
- b) une droite.
- d) un cercle privé d'un point.

4. Dans le plan complexe, on donne le point D d'affixe i. L'écriture complexe de la rotation de centre D et d'angle $-\frac{\pi}{3}$ est :

a)
$$z' = \left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)z - \frac{\sqrt{3}}{2} + \frac{1}{2}i$$

b)
$$z' = \left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)z - \frac{\sqrt{3}}{2} + \frac{1}{2}i$$

c)
$$z' = \left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)z - \frac{\sqrt{3}}{2} - \frac{1}{2}i$$

d)
$$z' = \left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)z + \frac{\sqrt{3}}{2} + \frac{1}{2}i$$

1. 3. Qcm

L'exercice comporte 4 questions. Pour chaque question, on propose 3 affirmations. Pour chacune d'elles, indiquer si elle est vraie ou fausse en cochant la case correspondante. Aucune justification n'est demandée.

Dans l'exercice, le plan complexe est menu d'un repère orthonormé $(O; \vec{u}; \vec{v})$.

Dans i exercice, le plan complexe est menu a un repere orthonorme (O,u,v) .			
Q1	Pour tout n entier	$e^{in\theta}$	Faux Vrai
	naturel non nul, pour	$\cos(\theta^n) + i\sin(\theta^n)$	Faux Vrai
	tout réel θ , $\left(e^{i\theta}\right)^n$ est égal à :	$\cos(n\theta) + i\sin(n\theta)$	FauxVrai
Q2		$\frac{z+\overline{z}}{2}$	FauxVrai
	La partie imaginaire du nombre z est égale à :	$\frac{z-\overline{z}}{2}$	FauxVrai
		$ \frac{z + \overline{z}}{2} $ $ \frac{z - \overline{z}}{2} $ $ \frac{z - \overline{z}}{2i} $	FauxVrai
Q3	Soit z un nombre complexe tel que	y^2	FauxVrai
	z = x + iy (x et y réels). Si z est	$-y^2$	FauxVrai
	un imaginaire pur, alors $ z ^2$ est égal à:	$-x^2$	///Faux /////Vrai
Q4	A, B et C sont des points d'affixes	BC = 2AC	Faux !Vrai
	respectives a , b et c telles que $\frac{b-a}{c-a} = i\sqrt{3}$, alors:	$(\overrightarrow{AB}; \overrightarrow{AC}) = \frac{\pi}{2} + 2k\pi \; ; k \in \mathbb{Z}$	Faux Vrai

<u>www.guessmaths.co</u> <u>E-mail</u>: <u>abdelaliguessouma@gmail.com</u> <u>whatsapp</u>: 0604488896

1. 4. <u>Qcm</u>

VRAI-FAUX

On considère le nombre complexe : $Z = -\frac{\sqrt{2}}{1+i} e^{\frac{i\pi}{3}}$.

a. On
$$a:|Z|=1$$
.

b. On
$$a: Z = -(1-i)e^{\frac{i\pi}{3}}$$
.

c. Le réel
$$-\frac{\pi}{12}$$
 est un argument de Z.

d. On
$$a: Z = e^{\frac{13i\pi}{12}}$$