

#### <u>Série n° 46 «Etude de fonctionlogarithmique »</u> 2éme Bac Sc.Maths Année scolaire 2020/2021

#### Exercice nº1.

1. On considère la fonction f définie sur 
$$[0;+\infty[par: \begin{cases} f(x) = \frac{\ln(1+x)}{x} & \text{si } x > 0 \\ f(0) = 1 \end{cases}$$

Montrer que f est continue à droite en 0.

2. a. Etudier le sens de variation de la fonction g définie sur  $[0;+\infty[$  par :

$$g(x) = \ln(1+x) - \left(x - \frac{x^2}{2} + \frac{x^3}{3}\right)$$

Calculer 
$$g(0)$$
 et en déduire que sur  $\mathbb{R}^+$ ;  $\ln(1+x) \le \left(x-\frac{x^2}{2}+\frac{x^3}{3}\right)$ 

b. Par une étude analogue, montrer que si  $x \ge 0$ , alors;  $\ln(1+x) \ge x - \frac{x^2}{2}$ 

c. Établir que pour tout 
$$x > 0$$
 on  $a : -\frac{1}{2} \le \frac{\ln(1+x)-x}{x^2} \le -\frac{1}{2} + \frac{x}{3}$ 

En déduire que f est dérivable en 0 et que  $f'(0) = -\frac{1}{2}$ 

3. a. Soit h la fonction définie sur  $[0;+\infty[par:h(x)]=\frac{x}{x+1}-\ln(1+x)$ 

Étudier les variations de h et en déduire le signe de h(x) sur  $[0;+\infty[$ 

b. Montrer que sur 
$$[0;+\infty[, f'(x)] = \frac{h(x)}{x^2}$$

c. Dresser le tableau de variation de f en précisant la limite de f en  $+\infty$ .

d. On désigne par C la courbe représentative de f dans un plan muni d'un repère orthonormé.

Construire la tangente T à C au point d'abscisse 0.

Montrer que C admet une asymptote. Tracer la courbe C.

# Exercice n°2.

Soit f la fonction définie sur l'intervalle  $[0; +\infty[par: f(x) = \ln(x^2 + 4)]$ .

# PARTIE A

1. Étudier le sens de variation de la fonction f sur l'intervalle  $[0;+\infty[$ .

2. Soit g la fonction définie sur l'intervalle  $[0;+\infty[par:g(x)=f(x)-x]]$ 

a) Étudier le sens de variation de la fonction g sur l'intervalle  $[0;+\infty[$ .

b) Montrer que sur l'intervalle [2;3] l'équation g(x) = 0 admet une unique solution que l'on notera  $\alpha$ .

Donner un encadrement de  $\alpha$  à  $10^{-1}$ .

<u>www.guessmaths.co</u> <u>E-mail</u>: <u>abdelaliguessouma@gmail.com</u> <u>whatsapp</u>: 0604488896

c) Justifier que le nombre réel  $\alpha$  est l'unique solution de l'équation f(x) = x.

#### PARTIE B

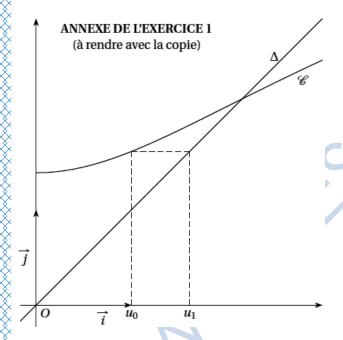
On considère la suite 
$$(u_n)$$
 définie par : 
$$\begin{cases} u_0 = 1 \\ u_{n+1} = f(u_n) \end{cases} \quad (\forall n \in IN)$$
.

La courbe C représentative de la fonction f et la droite  $(\Delta)$  d'équation y = x sont tracées sur le graphique donné en annexe (à rendre avec la copie).

1. À partir de  $u_0$  en utilisant la courbe C et la droite  $(\Delta)$ , on a placé  $u_1$  sur l'axe des abscisses.

De la même manière, placer les termes  $u_2$  et  $u_3$  sur l'axe des abscisses en laissant apparents les traits de construction.

- 2. Placer le point i de la courbe C qui a pour abscisse a.
- 3. a) Montrer que, pour tout nombre entier naturel n, on a :  $1 \le u_n \le \alpha$ .
  - b) Montrer que la suite  $(u_n)$  converge.
  - c) Déterminer sa limite.



# Exercice n°3

Posons  $u_n = \sum_{k=1}^{n} \frac{1}{k}$  pour tout  $n \in \mathbb{IN}^*$ 

- 1) Montrer que :  $(\forall k \in \mathbb{N}^*)$ ;  $\frac{1}{k+1} < \ln(k+1) \ln(k) < \frac{1}{k}$
- 2) a) montrer que :  $(\forall n \in IN^*)$ ;  $u_{n+1} 1 < \ln(n+1) < u_n$ .
  - b) Déduire  $\lim_{n\to+\infty} u_n$
- 3) on considère la suite  $(v_n)$  tel que :  $v_n = u_{n-1} \ln(n)$  et on pose pour tout x de  $]0; +\infty[$  :

$$f(x) = \frac{1}{x} - \ln\left(\frac{x+1}{x}\right)$$
 et  $g(x) = \frac{1}{x+1} - \ln\left(\frac{x+1}{x}\right)$ 

a) Dresser le tableau de variation de f et de g.

- *b) Déduire que* :  $(\forall k \in IN^*)$ ;  $0 < f(k) < \frac{1}{k} \frac{1}{k+1}$
- c) Vérifier que :  $(\forall n \in \mathbb{IN}^* \{1\})$ ;  $v_n = \sum_{k=1}^{n-1} f(k)$  puis déduire que  $(v_n)$  est croissante.
- d) Montrer que :  $(\forall n \in \mathbb{IN}^* \{1\})$ ;  $1 \ln 2 < v_n < 1 \frac{1}{n}$ ; puis déduire que  $(v_n)$  est convergente et donner un encadrement de sa limite.

<u>www.guessmaths.co</u> <u>E-mail</u>: <u>abdelaliguessouma@gmail.com</u> <u>whatsapp</u>: 0604488896