

Correction Examen national 2016 Session normale

2éme Bac S.M

Exercice 1

$$\blacktriangleright \left(\bigcirc \mathcal{H}_3 \left(\mathbb{R} \right); +; \times \right) \text{ est un anneau unitaire } ; \mathsf{I} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

et $(\mathbb{C};+;\times)$ est un corps commutatif.

►
$$M(x;y) = \begin{pmatrix} x+y & 0 & -2y \\ 0 & 0 & 0 \\ y & 0 & x-y \end{pmatrix}$$

$$\blacktriangleright E = \{M(x;y)/(x;y) \in \mathbb{R}^2\}$$

1) Montrons que (E;+) est un show-groupe de $(\mathcal{M}_3(\mathbb{R});+)$

- \bullet E \subset $\mathcal{N}_3(\mathbb{R})$ et E \neq \varnothing (car $M(0;0) \in$ E)
- On a : $(\forall ((x;y);(a;b)) \in \mathbb{R}^2);$

$$M(x;y)-M(a;b) = \begin{pmatrix} x+y & 0 & -2y \\ 0 & 0 & 0 \\ y & 0 & x-y \end{pmatrix} - \begin{pmatrix} a+b & 0 & -2b \\ 0 & 0 & 0 \\ b & 0 & a-b \end{pmatrix}$$

$$= \begin{pmatrix} (x-a)+(y-b) & 0 & -2(y-b) \\ 0 & 0 & 0 \\ (y-b) & 0 & (x-a)-(y-b) \end{pmatrix}$$

$$= M(x-a;y-b)$$

Et $M(x-a;y-b) \in E$ (car $(x-a;y-b) \in \mathbb{R}^2$)

Donc E est un sous-groupe de
$$(\mathcal{O}V_3(\mathbb{R});+)$$
.

2) $(\forall ((x;y);(x';y')) \in \mathbb{R}^2 \times \mathbb{R}^2); M(x;y) \times M(x';y') = \begin{pmatrix} x+y & 0 & -2y \\ 0 & 0 & 0 \\ y & 0 & x-y \end{pmatrix} - \begin{pmatrix} x'+y' & 0 & -2y' \\ 0 & 0 & 0 \\ y' & 0 & x'-y' \end{pmatrix}$

$$= \begin{pmatrix} (x+y)(x'+y')-2yy' & 0 & -2y'(x+y)-2y(x'-y') \\ 0 & 0 & 0 \\ y(x'+y')+(x-y)y' & 0 & -2yy'+(x-y)(x'-y') \end{pmatrix}$$

$$= \begin{pmatrix} xx'-yy'+xy'+x'y & 0 & -2(x'y+yy'+xy'-yy') \\ 0 & 0 & 0 \\ x'y+yy'+xy'-yy' & 0 & -2yy'+xx'-xy'-x'y+yy' \end{pmatrix}$$

$$= \begin{pmatrix} (xx'-yy')+(xy'+x'y) & 0 & -2(xy'+x'y) \\ 0 & 0 & 0 \\ (x'y'+x'y) & 0 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} (xx'-yy')+(xy'+x'y) & 0 & -2(xy'+x'y) \\ 0 & 0 & 0 \\ (xy'+x'y) & 0 & (xx'-yy')-(xy'+x'y) \end{pmatrix}$$

<u>E-mail</u>: <u>abdelaliguessouma@gmail.com</u> ww.guessmaths.co

$$= M(xx'-yy';xy'+x'y)$$

$$\mathsf{Donc}: \Big(\forall \Big(\big(\mathsf{X}; \mathsf{Y} \big); \big(\mathsf{X}'; \mathsf{Y}' \big) \Big) \in \mathbb{R}^2 \times \mathbb{R}^2 \Big); \overline{ \big(\mathsf{M} \big(\mathsf{X}; \mathsf{Y} \big) \times \mathsf{M} \big(\mathsf{X}'; \mathsf{Y}' \big) = \mathsf{M} \big(\mathsf{X} \mathsf{X}' - \mathsf{Y} \mathsf{Y}'; \mathsf{X} \mathsf{Y}' + \mathsf{X}' \mathsf{Y} \big) \Big)}$$

3) a)
$$(\forall (z;z') \in \mathbb{C}^2)$$
) alors : $/z = x + iy$ et $z' = x' + iy'$ avec $((x,y,x',y') \in \mathbb{R}^4)$

On a :
$$\varphi(z \times z') = \varphi((x + iy) \times (x' + iy'))$$

= $M(xx' - yy'; xy' + x'y)$
= $M(x;y) \times M(x';y')$
= $\varphi(z) \times \varphi(z')$

Donc:
$$(\forall (z;z') \in \mathbb{C}^2)$$
; $\varphi(z \times z') = \varphi(z) \times \varphi(z')$

Par suite φ est un homomorphisme de $(\mathbb{C}^*;\times)$ vers $(E;\times)$.

b)
$$\varphi(\mathbb{C}^*) = \{\varphi(z) / z \in \mathbb{C}^*\}$$

 $= \{\varphi(a+ib) / (a,b) \in \mathbb{R}^2 - \{(0,0)\}\}$
 $= \{M(a,b) / (a,b) \in \mathbb{R}^2 - \{(0,0)\}\}$
Donc $\varphi(\mathbb{C}^*) = E - \{M(0,0)\} = E^*$

On a φ est un homomorphisme de $(\mathbb{C}^*;\times)$ vers $(E;\times)$ et $(\mathbb{C}^*;\times)$ est un groupe commutatif alors $(\varphi(\mathbb{C}^*);\times)$ cad $(E^*;\times)$ est un groupe commutatif.

1 est l'élément neutre de $(\mathbb{C}^*;\times)$, donc $\varphi(1)=M(1;0)$ est l'élément neutre de $(\mathbb{E}^*;\times)$.

4) (E;+)est un sous-groupe du groupe commutatif ($\mathcal{M}_3(\mathbb{R})$;+), donc (E;+)est un groupe commutatif d'élément neutre M(0;0)

Et $(E^*;\times)$ est un groupe commutatif.

"x" est distributive par rapport à "+" dans $\mathcal{M}_3(\mathbb{R})$.

Donc ''x'' est distributive par rapport ă ''+'' dans E. Par suite $(E;+;\times)$ est un corps commutatif.

5) a) On a : $(\forall M(x;y) \in E)$;

$$A \times M(x;y) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \times \begin{pmatrix} x+y & 0 & -2y \\ 0 & 0 & 0 \\ y & 0 & x-y \end{pmatrix}$$
$$= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Donc: $(\forall M(x;y) \in E)$; $A \times M(x;y) = M(0;0)$

b) Soit $M(x;y) \in E$; supposons qu'il existe $M(x;y) \in E$ qui admet un symétrique M^{-1} dans $(\mathcal{O}_3(\mathbb{R});\times)$; donc : $M(x;y)\times M^{-1}=I$

www.guessmaths.co E-mail: abdelaliguessouma@gmail.com whatsapp: 060448889

Alors $A \times (M(x;y) \times M^{-1}) = A$, d'où $(A \times M(x;y)) \times M^{-1} = A$ (car x est associative dans $\mathcal{M}_3(\mathbb{R})$)

Donc $A = M(0;0) \times M^{-1} = M(0;0)$

D'où A = M(0,0) ce qui est impossible.

Par suite il n'existe aucun élément de E symétrisable dans $(\mathcal{M}_3(\mathbb{R});\times)$.

Exercice 2

Partie I

Soit $(a;b) \in \mathbb{N}^* \times \mathbb{N}^*$ et le nombre premier 173 divise (a^3+b^3) .

1- On a: $a^3+b^3 \equiv 0$ [173] \Leftrightarrow 173| a^3+b^3 "

$$\Leftrightarrow a^3 \equiv -b^3 \quad [173]$$
$$\Leftrightarrow (a^3)^{57} \equiv (-b^3)^{57} \quad [173]$$

Par suite : $a^{171} \equiv -b^{171} [173]$.

2. On a : **a**) $173|a \Rightarrow 173|a^3$

Et comme $173|a^{3}+b^{3}$

Alors: $173|(a^3+b^3)-a^3|$

D'où : $173|b^3$

Et comme 173 est premier ; alors 173|b

■) De même si 173|b on montre que : 173|a

Conclusion: $173|a \Leftrightarrow 173|b$.

3. On a: $173 a \Leftrightarrow 173 b$

D'où : 173|a+b

Donc si 173|a alors $\boxed{173|a+b}$.

4-a) On a: 173 ne divise pas a, donc d'après le question 2-173 ne divise pas b;

D'où d'après le petit théorème de Fermat :

$$a^{172} \equiv 1 [173] \text{ et } b^{172} \equiv 1 [173]$$

(Cor 173 ne divise pas $a \Leftrightarrow 173 \land a = 1$ et 173 ne divise pas $b \Leftrightarrow 173 \land b = 1$; 173 étant premier)

Par suite : $a^{172} \equiv b^{172} [173]$

b) On a: $a^{171} \equiv -b^{171}$ [173] et $a^{172} \equiv b^{172}$ [173]

Donc: $a^{172} \equiv -b \times a^{171}$ [173] $a^{171} \times (a+b) \equiv 0$ [173].

c) On a : 173 ne divise pas a , donc 173 ne divise pas a^{171} .

et comme 173 est premier alors : $173 \wedge a^{171} = 1$

On a: 173 divise $a^{171} \times (a+b)$

Alors d'après le théorème de Gauss 173 divise (a+b).

Partie II

1- Pour tout x; y et k de \mathbb{N}^* , on a:

$$\begin{cases} x + y = 173k \\ x^3 + y^3 = 173(xy+1) \end{cases} \Rightarrow (x^2 - xy + y^2) 173k = 173(xy+1)$$

www.guessmaths.co E-mail: abdelaliguessouma@gmail.com whatsapp: 060448889

$$\Rightarrow ((x-y)^2 + xy)k = (xy+1)$$
$$\Rightarrow k(x-y)^2 = 1 + xy(1-k)$$
$$\Rightarrow k(x-y)^2 + (k-1)xy = 1$$

Donc: $k(x-y)^2 + (k-1)xy = 1$

2. \blacksquare On suppose que $k \neq 1$; d'après ce qui précède on a : $k(x-y)^2 + (k-1)xy = 1$

Donc: $k(x-y)^2 = 1 - (k-1)xy$ (*)

Comme x; y et k appartiennent à \mathbb{N}^* alors : $k \ge 2$ et $xy \ge 1$

donc: $k(x-y)^2 \le 0$.

D'où: x = y

Et l'équation (*) devient : (k-1)xy=1

Donc: x = y = (k-1) = 1

ce qui est contradictoire car : $x + y = 173k \ge 173$.

Par suite notre supposition est fausse et k = 1.

$$\blacksquare (E) \Rightarrow \begin{cases} (x-y)^2 = 1 \\ x+y = 173 \end{cases} \Rightarrow \begin{cases} (x-y) = 1 \\ x+y = 173 \end{cases} ou \begin{cases} (x-y) = -1 \\ x+y = 173 \end{cases}$$

$$\Rightarrow \begin{cases} 2x = 174 \\ 2y = 172 \end{cases} ou \begin{cases} 2x = 172 \\ 2y = 174 \end{cases}$$

$$\Rightarrow \begin{cases} x = 87 \\ y = 86 \end{cases} ou \begin{cases} x = 86 \\ y = 87 \end{cases}$$

Réciproquement on a :

$$87^3 + 86^3 = (86 + 87)(87^2 - 87 \times 86 + 86^2) = 173(87 + 86^2) = 173(1 + 87 \times 86)$$

Donc l'ensemble de solutions de l'équation (E) est : $S = \{(87;86);(86;87)\}$.

Exercice 3

Soit
$$z = \frac{2z_1z_2}{z_1 + z_2}$$

1) a) on a:
$$\frac{z_1 - z}{z_2 - z} \times \frac{z_2}{z_1} = \frac{z_1 - \frac{2z_1z_2}{z_1 + z_2}}{z_2 - \frac{2z_1z_2}{z_1 + z_2}} \times \frac{z_2}{z_1}$$
$$= \frac{\frac{z_1(z_1 + z_2) - 2z_1z_2}{z_2(z_1 + z_2) - 2z_1z_2}}{\frac{z_2(z_1 + z_2) - 2z_1z_2}{z_2(z_1 + z_2) - 2z_1z_2}} \times \frac{z_2}{z_1}$$
$$= \frac{\frac{z_1^2 + z_1z_2 - 2z_1z_2}{z_2^2 + z_1z_2 - 2z_1z_2}}{\frac{z_2^2 + z_1z_2 - 2z_1z_2}{z_1}} \times \frac{z_2}{z_1}$$
$$= \frac{z_1(z_1 - z_2)}{-z_2(z_1 - z_2)} \times \frac{z_2}{z_1} = -1$$

b) Comme O; M_1 et M_2 ne sont pas alignes et $\frac{Z_1 - Z}{Z_2 - Z} \times \frac{Z_2}{Z_1} = -1$, alors:

$$\frac{z_1-z}{z_2-z} \times \frac{z_2-0}{z_1-0} \in \mathbb{R}$$
 et O; M_1 ; M_2 et M ne sont pas alignes; donc:

www.guessmaths.co

E-mail: abdelaliguessouma@gmail.com

les points O; M,; M, et M sont cocycliques.

Par suite, M appartient au cercle circonscrit au triangle OM₁M₂

2) On a:
$$z_2 = \overline{z}_1$$
; donc: $z = \frac{2z_1z_2}{z_1 + z_2} = \frac{2z_1\overline{z}_1}{z_1 + \overline{z}_1} = \frac{2|z_1|^2}{2\text{Re}(z_1)} = \frac{|z_1|^2}{\text{Re}(z_1)}$

D'où z∈1R ; par suite M appartient à l'axe des réels.

3)
$$R(O; \alpha \in]0; \pi[)$$

a) on a :
$$M_2 = R(M_1) \Leftrightarrow \overline{Z_2 = Z_1.e^{i\alpha}}$$

b) On a :
$$\frac{Z_2}{Z_1} = e^{i\alpha} e^{i\alpha} \frac{Z_1 - Z}{Z_2 - Z} \times \frac{Z_2}{Z_1} = -1$$
.

Donc
$$\frac{Z_1 - Z}{Z_2 - Z} \times e^{i\alpha} = -1 \Rightarrow Z - Z_2 = (Z_1 - Z) \times e^{i\alpha}$$

$$D'o\dot{u} : |z-z_2| = |z-z_1|$$
; alors : $M_2M = M_1M$

Par suit, M appartient à la médiatrice du segment $\lceil M_1 M_2 \rceil$

4) a) On a :
$$z_1$$
 et z_2 solutions de l'équation (E) : $6t^2 - (e^{i\theta} + 1)t + (e^{i\theta} - 1) = 0$

$$z_1$$
 et z_2 sont solutions de l'équation (E), donc
$$\begin{cases} z_1 + z_2 = \frac{e^{i\theta}}{6} \\ z_1 + z_2 = \frac{e^{i\theta}}{6} \end{cases}$$

D'où:
$$z = \frac{2z_1z_2}{z_1 + z_2}$$
$$= 2\frac{\frac{e^{i\theta} - 1}{6}}{\frac{e^{i\theta} + 1}{6}}$$
$$= 2\frac{e^{i\theta} - 1}{\frac{e^{i\theta} - 1}{6}}$$

Alors :
$$z = 2\frac{e^{i\theta} - 1}{e^{i\theta} + 1}$$

D'où:
$$z = 2itan\left(\frac{\theta}{2}\right)$$

On a:
$$0 < \theta \le \pi \Rightarrow 0 < \frac{\theta}{2} \le \frac{\pi}{2}$$

Donc:
$$\tan\left(\frac{\theta}{2}\right) > 0$$

Par suite le forme trigonométrique du nombre complexe z est :

$$z = 2\tan\left(\frac{\theta}{2}\right)\left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right)$$

Exercice 4

Partie I

1) Soit
$$\varphi$$
: $\uparrow \mapsto e^{-t}$ et $x > 0$

 φ est continue et dérivable sur \mathbb{R} ; donc φ est continue sur $\left[0;\mathbf{x}\right]$ et dérivable sur $\left]0;\mathbf{x}\right[$

D'où d'après le théorème des accroissements finis; on a :

$$(\exists \theta \in]0; x[)/\varphi(x)-\varphi(0) = x.\varphi'(\theta) \text{ et } \varphi'(\theta) = -e^{-\theta}.$$

Donc:
$$\frac{e^{-x}-1}{x} = -e^{-\theta}$$

D'où:
$$\frac{X}{1-e^{-x}} = e^{\theta}$$

Alors:
$$(\forall x > 0)$$
; $(\exists \theta \in]0; x[)/[e^{\theta} = \frac{x}{1 - e^{-x}}]$

2) on a:
$$0 < \theta < x$$
; donc $1 < e^{\theta} < e^{x}$

Par suite :
$$(\forall x > 0)$$
; $1 < \frac{x}{1 - e^{-x}} < e^{x}$

On en déduit :

a)
$$(\forall x > 0)$$
; $\frac{x}{1 - e^{-x}} > 1 \Rightarrow \boxed{1 - x < e^{-x}}$

b)
$$(\forall x > 0)$$
; $\frac{x}{1 - e^{-x}} < e^x \Rightarrow \boxed{x + 1 < e^x}$

c)
$$(\forall x > 0)$$
; $1 < \frac{x}{1 - e^{-x}} < e^{x} \Rightarrow 1 < \frac{xe^{x}}{e^{x} - 1} < e^{x}$

$$\Rightarrow 1 < \frac{xe^{x}}{e^{x} - 1} < e^{x}$$

$$\Rightarrow 0 < \ln\left(\frac{xe^{x}}{e^{x} - 1}\right) < x$$

Partie II

$$\begin{cases} f(x) = \frac{xe^x}{e^x - 1} & \text{si } x > 0 \\ f(0) = 1 \end{cases}$$

1) a) On a :
$$\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \frac{xe^x}{e^x - 1}$$

$$= \lim_{x \to 0^{+}} \frac{e^{x}}{\frac{e^{x} - 1}{x}} = 1$$

Et
$$f(0) = 1$$
 donc: $\lim_{x \to 0^+} f(x) = f(0)$

Par suite f est continue à droite en O.

b) On a:
$$\lim_{x \to +\infty} \left(f(x) - x \right) = \lim_{x \to +\infty} \left(\frac{xe^x}{e^x - 1} - x \right)$$
$$= \lim_{x \to +\infty} \left(\frac{xe^x - xe^x + x}{e^x - 1} \right)$$
$$= \lim_{x \to +\infty} \left(\frac{1}{\frac{e^x}{e^x} - \frac{1}{e^x}} \right) = 0 \qquad \text{(Car } \lim_{x \to +\infty} \frac{e^x}{x} = +\infty \text{ et } \lim_{x \to +\infty} \frac{1}{x} = 0 \text{)}$$

Donc (C) admet une asymptote oblique d'équation y = x au voisinage de $+\infty$.

2) a) D'après la question (2) a) parte I); on a:

$$(\forall t > 0)$$
; $1 - t < e^{-t}$

Soit $x \ge 0$; les fonctions $t \mapsto e^{-t}$ et $t \mapsto (1-t)$ sont continues sur [0;x] donc :

$$\int_0^x (1-t) dt \le \int_0^x e^{-t} dt \; ; \; d'où : \left[x - \frac{x^2}{2} \le -e^{-x} + 1 \right]$$

b) D'après la question précédente on déduit que ; pour tout $x \ge 0$

$$e^{-x} + x - 1 \le \frac{x^2}{2}$$

et on a :
$$(\forall t > 0)$$
 ; $t - \frac{t^2}{2} \le -e^{-t} + 1$

Soit $x \ge 0$; les fonctions $t \mapsto t - \frac{t^2}{2}$ et $t \mapsto -e^{-t} + 1$ sont continues sur [0;x]; donc :

$$\int_0^x \left(t - \frac{t^2}{2} \right) dt \le \int_0^x \left(-e^{-t} + 1 \right) dt$$

D'où :
$$(\forall x \ge 0)$$
 ; $\frac{x^2}{2} - \frac{x^3}{6} \le e^{-x} + x - 1 \le \frac{x^2}{2}$

3) a) pour tout
$$x > 0$$
; on a:
$$\frac{f(x)-1}{x} = \left(\frac{xe^{x}}{e^{x}-1}-1\right) \times \frac{1}{x}$$

$$= \frac{xe^{x}-e^{x}+1}{e^{x}-1} \times \frac{1}{x}$$

$$= \frac{\left(e^{-x}+x-1\right)}{e^{x}-1} \times \frac{e^{x}}{x}$$

$$= \frac{\left(e^{-x}+x-1\right)}{x^{2}} \times \frac{xe^{x}}{e^{x}-1}$$

Donc:
$$(\forall x > 0)$$
;
$$\frac{f(x)-1}{x} = \frac{e^{-x} + x - 1}{x^2} \times f(x)$$

b) D'après la question 2) b); on a
$$(\forall x > 0)$$
: $\frac{1}{2} - \frac{x}{6} \le \frac{e^{-x} + x - 1}{x^2} \le \frac{1}{2}$ et $\lim_{x \to 0^+} \left(\frac{1}{2} - \frac{x}{6}\right) = \frac{1}{2}$

Donc
$$\lim_{x\to 0^+} \left(\frac{e^{-x} + x - 1}{x^2} \right) = \frac{1}{2}$$

De plus on a :
$$\lim_{x\to 0^+} f(x) = 1$$

Par suite :
$$\lim_{x\to 0^+} \frac{f(x)-1}{x} = \frac{1}{2}$$

Cad:
$$\lim_{x\to 0^+} \frac{f(x)-f(0)}{x-0} = \frac{1}{2}$$

Donc f est dérivable à droite en 0 ; et
$$\boxed{f'_d(0) = \frac{1}{2}}$$
.

Interprétation géométrique :

- (C) admet une demi-tangente de coefficient directeur $\frac{1}{2}$ à droite du point A(0;1).
- 4) a) les fonctions $x \mapsto xe^x$ et $x \mapsto e^x 1$ sont dérivables sur |R|; en particulier sur $|0;+\infty[$ Et $(\forall x > 0)$: $e^x 1 \neq 0$. Donc f est dérivable sur $|0;+\infty[$

et pour tout
$$x \in]0;+\infty[$$
 on a : $f'(x) = \frac{e^x(e^x - 1 - x)}{(e^x - 1)^2}$

b) D'après la question 2) a) partie I; on a : $(\forall x > 0)$; $x + 1 < e^x$

On en déduit que :
$$(\forall x > 0)$$
; $e^x - 1 - x > 0$

Càd
$$(\forall x > 0)$$
; $f'(x) > 0$

D'où : f est strictement croissante sur
$$]0;+\infty[$$
 .

Partie III

$$\begin{cases} U_0 > 0 \\ U_{n+1} = In(f(U_n)) \end{cases} ; (\forall n \in IN)$$

1) a) Montrons par récurrence que : $(\forall n \in IN)$; $U_n > 0$

Pour n=o

On a:
$$U_0 > 0$$

Soit n∈ IN

Supposons que $\mbox{$\mbox{U_{n}}$}\!>\!0$ et montrons que $\mbox{$\mbox{U_{n+1}}$}\!>\!0$

On a $U_n > 0$ et f est strictement croissante sur $]0;+\infty[$; donc:

$$f(U_n) > f(0)et f(0) = 1.$$

$$D'o\dot{\upsilon}: f(\upsilon_n) > 1$$
 , donc $ln(f(\upsilon_n)) > 0$

Par suite:
$$U_{n+1} > 0$$

Conclusion

On a montré par récurrence que : $(\forall n \in IN)$; $U_n > 0$

b) D'après la question 2) c) partie I ; on a : $(\forall x > 0)$ $0 < ln\left(\frac{xe^x}{e^x - 1}\right) < x$

E-mail: abdelaliguessouma@gmail.com

$$\text{Et comme } U_{n} > 0 \text{ , alors : } 0 < ln \bigg(\frac{U_{n} e^{U_{n}}}{e^{U_{n}} - 1} \bigg) < U_{n} \text{ d'où } 0 < ln \Big(f \Big(U_{n} \Big) \Big) < U_{n}$$

Donc: $U_{n+1} < U_n$

D'où : la suite (u_n) est décroissante et comme elle est minore par 0 ; alors elle est convergente.

c) On a:
$$ln(f(0)) = ln(1) = 0$$

Donc 0 est une solution de l'équation ln(f(x)) = x;

et d'après la question 2) c) partie I ; on a : $(\forall x > 0)$; $0 < \ln(f(x)) < x$.

Donc l'équation $\ln(f(x)) = x$ n'admet pas de solution dans $0; +\infty$.

Alors 0 est l'unique solution de l'équation ln(f(x)) = x

On pose :
$$(\forall x \in [0; +\infty[); g(x) = \ln(f(x)))$$

f est continue et strictement croissante sur $[0;+\infty]$, donc

$$(\forall x \ge 0)$$
: $f(x) \ge f(0)$ et $f(0)=1$, donc $(\forall x \ge 0)$: $f(x) \ge 1$

$$f(\lceil 0; +\infty \lceil) \subset \lceil 1; +\infty \rceil$$

et In est continue $[1;+\infty[$; donc g est continue $\sup[0;+\infty[$ et $g([0;+\infty[)\subset[0;+\infty[$ et on (U_n) est convergente donc si $\lim_{n\to+\infty}U_n$ est la solution de l'équation g(x)=x

$$sur [0;+\infty[(càd ln(f(x))=x)$$

Comme 0 est l'unique solution de l'équation $\ln(f(x)) = x$ alors $\lim_{n \to +\infty} u_n = 0$

Exercice 5

$$(\forall x > 0); F(x) = \int_{\ln 2}^{x} \frac{1}{\sqrt{e^{t} - 1}} dt$$

 $\text{la fonction } t \mapsto \frac{1}{\sqrt{e^t-1}} \text{ est continue et positive sur } \left[\ln 2; +\infty\right[\text{, donc : } \int_{\ln 2}^x \frac{1}{\sqrt{e^t-1}} dt \geq 0 \right]$

D'où:
$$F(x) \ge 0$$
.

▶ **2**^{éme} Cas
$$0 \le x \le \ln 2$$

la fonction $t \mapsto \frac{1}{\sqrt{e^t - 1}}$ est continue et positive sur $[x; \ln 2]$, donc :

$$\int_{x}^{\ln 2} \frac{1}{\sqrt{e^{t}-1}} dt \ge 0 ; d'où : \int_{\ln 2}^{x} \frac{1}{\sqrt{e^{t}-1}} dt \le 0$$

Donc:
$$F(x) \le 0$$
.

b) la fonction $t \mapsto \frac{1}{\sqrt{e^t - 1}}$ est continue sur I et $\ln 2 \in I$; donc F est dérivable sur I; et on

a pour tout
$$x \in I$$
:
$$F'(x) = \frac{1}{\sqrt{e^x - 1}}$$

c)
$$(\forall x > 0)$$
; $F'(x) > 0$, donc F est strictement croissante sur I.

2) a) On pose :
$$U = \sqrt{e^t - 1}$$
 ; donc $t = \ln(1 + U^2)$ et $dt = \frac{2U}{1 + U^2} dU$

D'où:
$$F(x) = \int_{1}^{\sqrt{e^{x}-1}} \left(\frac{1}{\upsilon} \times \frac{2\upsilon}{1+\upsilon^{2}}\right) dt$$

$$= 2\int_{1}^{\sqrt{e^{x}-1}} \left(\frac{1}{1+\upsilon^{2}}\right) dt$$

$$= 2\left[\arctan(\upsilon)\right]_{1}^{\sqrt{e^{x}-1}}$$

$$= 2\left(\arctan(\sqrt{e^{x}-1}) - \frac{\pi}{4}\right)$$

Par suite :
$$(\forall x \in I)$$
; $F(x) = 2\arctan(\sqrt{e^x - 1}) - \frac{\pi}{2}$

b)
$$\blacktriangleright$$
 On a : $\lim_{x\to 0^+} \sqrt{e^x-1} = 0$ et $t\mapsto \arctan(t)$ est continue en 0 ; donc : $\lim_{x\to 0^+} \arctan(\sqrt{e^x-1}) = \arctan(0) = 0$.

D'où:
$$\lim_{x\to 0^+} F(x) = -\frac{\pi}{2}$$

► On a aussi :
$$\lim_{x \to +\infty} \sqrt{e^x - 1} = +\infty$$
 et $\lim_{x \to +\infty} \arctan(x) = \frac{\pi}{2}$; alors : $\lim_{x \to +\infty} F(x) = 2 \times \frac{\pi}{2} - \frac{\pi}{2}$

Donc:
$$\lim_{x\to+\infty} F(x) = \frac{\pi}{2}$$

3) a) F est dérivable sur I ; donc F est continue sur I et F est strictement croissante sur I , alors F est une bijection de I vers
$$J = F(I) : F(I) = \lim_{x \to 0^+} F(x) : \lim_{x \to +\infty} F(X) = -\frac{\pi}{2} : \frac{\pi}{2}$$

b) Pour tout
$$x \in \left[-\frac{\pi}{2}; \frac{\pi}{2} \right]$$
 et tout $y \in \left] 0; +\infty \right[$; on a :

$$F^{-1}(x) = y \Leftrightarrow F(y) = x$$

$$\Leftrightarrow 2\arctan\left(\sqrt{e^{y} - 1}\right) - \frac{\pi}{2} = x$$

$$\Leftrightarrow \arctan\left(\sqrt{e^{y} - 1}\right) = \frac{x}{2} + \frac{\pi}{4}$$

$$\Leftrightarrow \sqrt{e^{y} - 1} = \tan\left(\frac{x}{2} + \frac{\pi}{4}\right) \text{ (car } 0 < \left(\frac{x}{2} + \frac{\pi}{4}\right) < \frac{\pi}{2} \text{)}$$

$$\Leftrightarrow$$
 e^y -1 = tan² $\left(\frac{x}{2} + \frac{\pi}{4}\right)$

$$\Leftrightarrow e^{y} = 1 + \tan^{2}\left(\frac{x}{2} + \frac{\pi}{4}\right)$$

$$\text{Donc}: \left(\forall \mathsf{X} \in \left] - \frac{\pi}{2}; \frac{\pi}{2} \right[\right); \left\lceil \mathsf{F}^{-1} \left(\mathsf{X} \right) = \ln \left[1 + \tan^2 \left(\frac{\mathsf{X}}{2} + \frac{\pi}{4} \right) \right] \right\rceil$$

www.guessmaths.co

E-mail: abdelaliguessouma@gmail.com