

Examen national 2017 Session de rattrapage 2éme Bac SM

Exercice 1: (4,5 points)

On rappelle que $(\mathcal{C},+,\times)$ est un corps commutatif, $(\mathcal{M}_2(\mathbf{IR}),+,\cdot)$ est un espace vectoriel réel et que $(\mathcal{M}_1(\mathbf{IR}),+,\times)$ est un anneau unitaire non commutatif et non intègre.

On pose:
$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
, $J = \begin{pmatrix} 0 & -3 \\ 1 & 0 \end{pmatrix}$, $M(x; y) = \begin{pmatrix} x & -3y \\ y & x \end{pmatrix}$ pour tout $(x; y) \in IR^2$ et soit: $E = \{M(x; y)/(x; y) \in IR^2\}$

0,75 pt 1) Montrer que E est sous espace vectoriel de $(\mathcal{M}_2(\mathbf{IR}), +, .)$ de dimension 2.

0,50 pt 2) a) Montrer que E est une partie stable de $(\mathcal{M}_2(IR),\times)$.

0,75 pt b) Montrer que $(E,+,\times)$ est un anneau unitaire commutatif.

3) On pose : $E^* = E - \{M(0;0)\}$, et soit φ l'application définie $de(\mathbb{C}^*,\times)$ dans (E^*,\times) par $(\forall (x;y) \in IR^2)$; $\varphi(x+iy) = M\left(x;\frac{y}{\sqrt{3}}\right)$

0,75 pt a) Montrer que 'est un isomorphisme de (\mathbb{C}^*,\times) dans (E^*,\times)

0,50 pt b) En déduire que (E^*,\times) est un groupe commutatif.

0,75 pt c) Montrer que : $J^{2017} = \varphi(3^{1008}\sqrt{3} i)$, puis déterminer l'inverse de la matrice J^{2017} dans (E^*,\times) .

0,50 pt 4) Montrer que $(E,+,\times)$ est corps commutatif.

Exercice 2 : (3 points)

Un sac contient 2n (n \in IN^) boules indiscernables au toucher ; n boules blanches et n boules noires.*

Un jeu consiste à : tirer une boule du sac, noter sa couleur et la remettre au sac puis tirer une nouvelle boule et noter sa couleur.

Les règles du jeu sont :

- Si les deux boules tirées sont blanches, on gagne 20 points.
- Si les deux boules tirées sont noires, on perd 20 points.
- Si les deux boules tirées sont de couleurs différentes, le gain est nul.
- 0,75 pt 1) Calculer la probabilité de gagner 20 points, la probabilité de perdre 20 points et la probabilité de réaliser un gain nul.
 - 2) On répète le jeu précédent cinq fois.

0,50 pt a) Calculer la probabilité de gagner 100 points.

1,00 pt b) Calculer la probabilité de gagner 40 points.

3) Au cours d'un seul jeu, on considère la variable aléatoire X qui prend les valeurs : -20 dans le cas de la perte, 0 si le gain est nul et +20 dans le cas du gain.

0,50 pt a) Déterminer la loi de probabilité de la variable aléatoire X.

0,25 pt b) Calculer l'espérance mathématique de la variable aléatoire X.

Exercice 3: (2,5 points)

Le plan complexe est rapporté au repère orthonormé direct $\left(O; \overrightarrow{e_{_{1}}}; \overrightarrow{e_{_{2}}}
ight)$.

www.guessmaths.co <u>E-mail</u>: <u>abdelaliguessouma@gmail.com</u> <u>whatsapp</u>: 0604488890

Soit M le point d'affixe le nombre complexe non nul z et M' le point d'affixe $z' = \frac{1}{2} \left(z + \frac{1}{z} \right)$

- 0,50 pt 1) Déterminer le nombre complexe z pour que les points M et M' soient confondus.
- 0,50 pt 2) On suppose que le point M est distinct des points A d'affixe 1 et B d'affixe -1.

Montrer que
$$\frac{z'+1}{z'-1} = \left(\frac{z+1}{z-1}\right)^2$$

0,75 pt 3) Soit (Δ) la médiatrice du segment [AB].

Montrer que : si le point M appartient à (Δ) alors M' appartient à (Δ) .

0,75 pt 4) Soit (Γ) le cercle de diamètre [AB].

Montrer que : si le point M appartient à (Γ) alors M' appartient à la droite (AB).

Exercice 4: (10 points)

Partie I:

On considère la fonction numérique f définie sur l'intervalle $I = [0; +\infty[$ par :

$$f(0) = 1$$
 et $(\forall x \in]0; +\infty[)$; $f(x) = \frac{arctan(x)}{x}$

- **0,50 pt** 1) Montrer que la fonction f est continue sur l'intervalle I.
- **0.50** pt 2) a) Soit x de I, montrer que : $(\forall t \in [0; x])$;

$$\frac{1}{1+x^2} \le \frac{1}{1+t^2} \le 1$$

- **0.50 pt** b) Montrer que: $(\forall x \in [0; +\infty[); \frac{x}{1+x^2} \le \arctan(x) \le x)$
- **0,75 pt** c) Montrer que la fonction f est dérivable à droite en 0.
- $[0,50\,\mathrm{pt}\quad 3)$ a) Sachant que f est dérivable sur l'intervalle $]0;+\infty[$, calculer f'(x) pour tout x de $]0;+\infty[$.
- 0,25 pt b) Étudier les variations de f sur l'intervalle I.

<u>Partie II</u> :

Soit g la fonction numérique définie sur $I = [0; +\infty[par g(0) = 1 et (\forall x \in]0; +\infty[);$

$$g(x) = \frac{1}{r} \int_0^x f(t) dt$$

- 0,50 pt 1) a) Montrer que $(\forall x \in [0; +\infty[); f(x) \le g(x) \le 1]$.
- 0,75 pt b) Montrer que la fonction g est dérivable à droite en 0.
- 0,75 pt 2) Montrer que g est dérivable sur l'intervalle $]0;+\infty[$ et que: $(\forall x \in]0;+\infty[);$

$$g'(x) = \frac{1}{r} (f(x) - g(x))$$

- 0,25 pt 3) Montrer que g est décroissante sur l'intervalle I.
- **0,75 pt** 4) a) Montrer que : $\lim_{x \to +\infty} \frac{1}{x} \int_{1}^{x} f(t) dt = 0$

(Remarquez que
$$(\forall x \in]0; +\infty[); 0 < arctan(x) < \frac{\pi}{2}$$
)

0,50 pt b) Calculer: $\lim_{x \to \infty} g(x)$

Partie III:

- 0,75 pt 1) Montrer que l'équation g(x) = x admet une unique solution α dans l'intervalle [0;1].
- **0.50 pt** 2) a) Vérifier que : $(\forall x \in [0; +\infty[); 0 \le 1 f(x) \le \frac{x^2}{1+x^2}]$

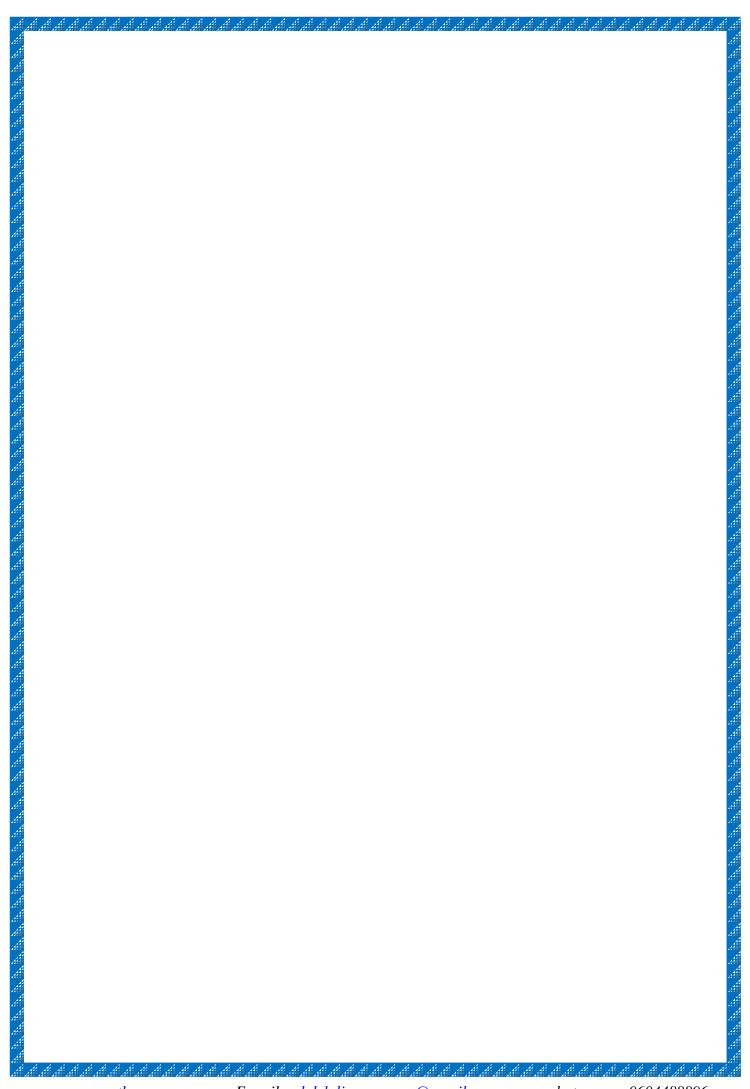
(Vous pouvez utiliser la question 2 - b) de partie I)

0,75 pt b) Montrer que:
$$(\forall x \in [0; +\infty[); |g'(x)| \leq \frac{1}{2}.$$

3) Soit
$$\left(u_{n}\right)_{n\geq0}$$
 la suite numérique définie par : $u_{0}\in IR^{+}$ et $\left(\forall n\in IN\right)$; $u_{n+1}=g\left(u_{n}\right)$

0,75 pt a) Montrer que :
$$(\forall n \in IN)$$
; $|u_{n+1} - \alpha| \le \frac{1}{2} |u_n - \alpha|$

0,75 pt b) Montrer que la suite
$$(u_n)_{n\geq 0}$$
 est convergente.



 $\underline{\textit{www.guessmaths.co}} \qquad \underline{\textit{E-mail}}: \underline{\textit{abdelaliguessouma@gmail.com}} \qquad \underline{\textit{whatsapp}}: \ 0604488896$