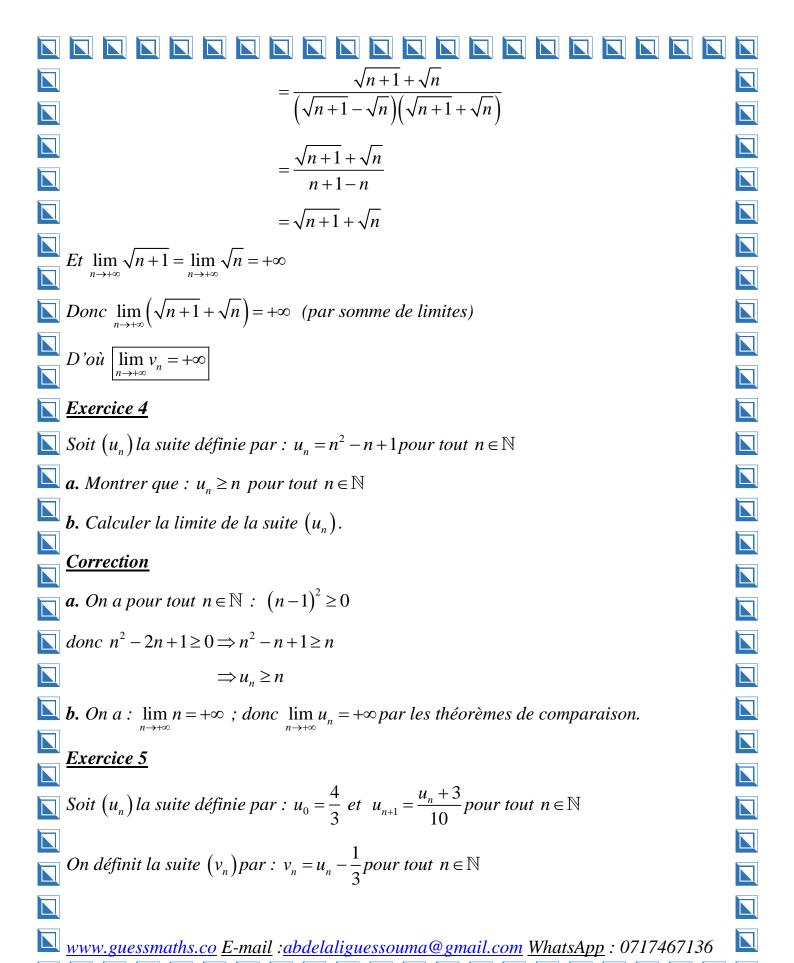


Et
$$\lim_{n \to +\infty} \sqrt{n^2 + 4} = \lim_{n \to +\infty} \sqrt{n^2 + 1} = +\infty$$

Donc
$$\lim_{n \to +\infty} \left(\sqrt{n^2 + 4} + \sqrt{n^2 + 1} \right) = +\infty$$
 (par somme de limites)

b. On a pour tout
$$n \in \mathbb{N}$$
: $v_n = \frac{1}{\sqrt{n+1} - \sqrt{n}}$

b. On a pour tout
$$n \in \mathbb{N}$$
: $v_n = \frac{1}{\sqrt{n+1} - \sqrt{n}}$



- **a.** Montrer que (v_n) est une suite géométrique en précisant ça raison et son premier
- terme; puis exprimer v_n .
- **b.** Montrer que $\lim_{n\to +\infty} v_n = 0$; puis déduire que $\lim_{n\to +\infty} u_n = \frac{1}{3}$

Correction

a. On a pour tout
$$n \in \mathbb{N}$$
: $v_{n+1} = u_{n+1} - \frac{1}{3}$

$$= \frac{u_n + 3}{10} - \frac{1}{3}$$

$$= \frac{3u_n + 9 - 1}{30}$$

$$= \frac{3u_n + 9 - 10}{30}$$

$$= \frac{3u_n - 1}{30}$$

$$=\frac{3u_n-1}{30}$$

$$=\frac{1}{10}\left(u_n-\frac{1}{3}\right)$$

$$=\frac{1}{10}v_n$$

donc
$$(v_n)$$
 est une suite géométrique de raison $q = \frac{1}{10}$ et de premier terme $v_0 = u_0 - \frac{1}{3} = \frac{4}{3} - \frac{1}{3} = 1$.

$$v_0 = u_0 - \frac{1}{3} = \frac{4}{3} - \frac{1}{3} = 1.$$

Donc pour tout
$$n \in \mathbb{N}$$
: $v_n = \left(\frac{1}{10}\right)^n$

b.
$$Or -1 < \frac{1}{10} < 1 \ donc \ \lim_{n \to +\infty} \left(\frac{1}{10}\right)^n = 0$$

$$D'où \lim_{n\to+\infty} v_n = 0.$$

Par suite
$$\lim_{n\to+\infty} u_n = \frac{1}{3}$$

Exercice 6

Soit
$$(u_n)$$
 la suite définie par : $u_n = \sum_{k=0}^{k=n} \left(\frac{1}{5}\right)^k$ pour tout $n \in \mathbb{N}$

a. Montrer que pour tout
$$n \in \mathbb{N}$$
; on $a: u_{n+1} - u_n > 0$; déduire que (u_n) est croissante.

b. Montrer que pour tout
$$n \in \mathbb{N}$$
; $u_n = \frac{5}{4} \left(1 - \left(\frac{1}{5} \right)^{n+1} \right)$; et $u_n \leq \frac{5}{4}$; déduire que la suite

$$(u_n)$$
 est convergente.

$$\mathbf{c}$$
. Calculer $\lim_{n\to+\infty} u_n$

Correction

a. pour tout
$$n \in \mathbb{N}$$
; on $a : u_{n+1} - u_n = \sum_{k=0}^{k=n+1} \left(\frac{1}{5}\right)^k - \sum_{k=0}^{k=n} \left(\frac{1}{5}\right)^k$

$$= \left(\frac{1}{5}\right)^{n+1} + \sum_{k=0}^{k=n} \left(\frac{1}{5}\right)^k - \sum_{k=0}^{k=n} \left(\frac{1}{5}\right)^k$$

$$Et\left(\frac{1}{5}\right)^{n+1} > 0 \; ; \; donc \; la \; suite \; \left(u_n\right) \; est \; croissante.$$

b. pour tout
$$n \in \mathbb{N}$$
; on $a : u_n = \sum_{k=0}^{k=n+1} \left(\frac{1}{5}\right)^k$

$$=\frac{5}{4}\left(1-\left(\frac{1}{5}\right)^{n+1}\right)$$

$$Et \ 1 - \left(\frac{1}{5}\right)^{n+1} \le 1$$

Donc
$$u_n \le \frac{5}{4}$$
 pour tout $n \in \mathbb{N}$; d'où la suite (u_n) est croissante majorée par $\frac{5}{4}$ alors elle est convergente.

c. On
$$a: -1 < \frac{1}{5} < 1$$
; $donc \lim_{n \to +\infty} \left(\frac{1}{5}\right)^{n+1} = 0$ $d'où \lim_{n \to +\infty} u_n = \frac{5}{4}$

Exercice 6

- Soit (u_n) la suite définie par : $u_0 = 1$ et $u_{n+1} = \frac{u_n + 1}{u_n + 3}$ pour tout $n \in \mathbb{N}$
- **a.** Montrer que: $u_{n+1} = 1 \frac{2}{u_n + 3}$ pour tout $n \in \mathbb{N}$

Z

- **b.** Montrer que: $0 \le u_n \le 1$ pour tout $n \in \mathbb{N}$
- c. Soit f la fonction définie sur [0;1] par : $f(x) = 1 \frac{2}{x+3}$
- Étudier les variations de f.
- **d.** Montrer par récurrence que : $u_n > u_{n+1}$ pour tout $n \in \mathbb{N}$; puis déduire que la suite (u_n) est décroissante et qu'elle est convergente.
- \bullet *e.* Calculer $\lim_{n\to+\infty} u_n$

Correction

- **a.** On a pour tout $n \in \mathbb{N}$: $u_{n+1} = \frac{u_n + 1}{u_n + 3}$
- $= \frac{u_n + 3 2}{u_n + 3}$ $= 1 \frac{2}{u_n + 3}$
- Donc pour tout $n \in \mathbb{N}$: $u_{n+1} = 1 \frac{2}{u_n + 3}$
- **b.** Montrons par récurrence que : $0 \le u_n \le 1$ pour tout $n \in \mathbb{N}$.

Initialisation :

- On a pour n=0; $u_0 = 1$ alors $0 \le u_0 \le 1$ donc la propriété est initialisée.
- www.guessmaths.co E-mail: abdelaliguessouma@gmail.com WhatsApp: 0717467136

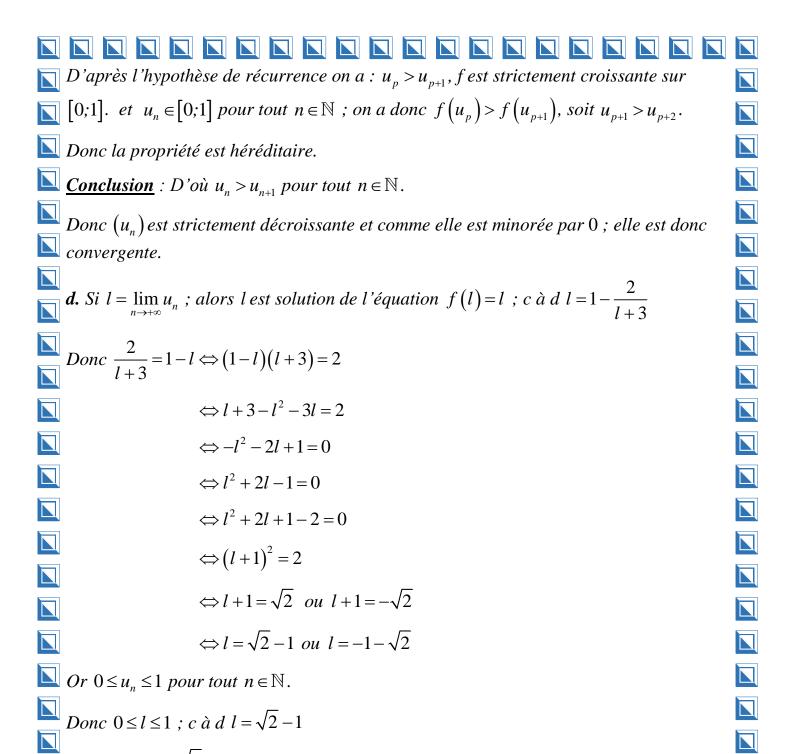
Hérédité :

- Soit p un entier naturel fixé; Supposons que $0 \le u_p \le 1$ et montrons que $0 \le u_{p+1} \le 1$.
 - Par hypothèse de récurrence on $a: 0 \le u_p \le 1$

- \triangle Alors $3 \le u_p + 3 \le 4$
- Puis $\frac{1}{4} \le \frac{1}{u_p + 3} \le \frac{1}{3}$.
- Puis $1 \frac{1}{3} \le 1 \frac{1}{u_p + 3} \le 1 \frac{1}{4}$.
- $C'est-\grave{a}-dire\ \frac{2}{3} \le u_{p+1} \le \frac{3}{4}.$
- Donc la propriété est héréditaire.
- Conclusion: $0 \le u_n \le 1$ pour tout $n \in \mathbb{N}$.
- c. $f(x) = 1 \frac{2}{x+3}$; $(\forall x \in [0;1])$
- f est dérivable sur [0;1]en tant que fonction rationnelle.
- Et pour tout $x \in [0;1]$ on $a : f'(x) = \frac{2}{(x+3)^2}$.
- Alors f'(x) > 0 pour tout $x \in [0;1]$; donc f est strictement croissante sur [0;1].
- d. Initialisation:
- On $a: u_0 = 1$ et $u_1 = \frac{1}{2} donc \ u_0 > u_1$. La propriété est initialisée.

<u>Hérédité :</u>

- Soit $p \in \mathbb{N}$ Supposons que $u_p > u_{p+1}$ et montrons que : $u_{p+1} > u_{p+2}$.
- www.guessmaths.co <u>E-mail</u>: <u>abdelaliguessouma@gmail.com</u> <u>WhatsApp</u>: 0717467136



www.guessmaths.co E-mail:abdelaliguessouma@gmail.com WhatsApp: 0717467136

I

 $D'où \lim_{n\to+\infty} u_n = \sqrt{2} - 1$