guessmaths

Bac Blanc nº89

2éme Bac PC-SVT

Exercice 1: (3 Pts) Thème: Nombres complexes

- 1) Dans le plan complexe rapporté à un repère orthonormé direct $(O; \vec{a}; \vec{v})$, on considère les points A;B et C d'affixes respectives: $z_A = -4$; $z_B = -1 + i\sqrt{3}$ et $z_C = -iz_D$
 - a) Montrer que le triangle OBC est isocèle et que $(\overrightarrow{OB}; \overrightarrow{OC}) = -\frac{\pi}{2}[2\pi]$.
 - b) Ecrire z_b sous forme trigonométrique et déduire que le point B appartient au cercle de centre O et de rayon 2.
 - c) Placer le point A et construire les points B et C.
- 2) Soit D le point d'affixe $z_p = (1-i)z_B$.
 - a) Montrer que le quadrilatère OCDB est un carré.
 - b) Montrer que $Aff(\overrightarrow{AB}) = \sqrt{3}z_c$
 - c) Déduire que les points A,B et D sont alignés
 - d) Calculer l'aire du quadrilatère OADC.

Exercice 2: (3 Pts) Thème: Suites numériques

On considère la suite (a_n) définie par : \cdot

$$\begin{cases} a_{n+1} = \frac{3a_{n}}{1 + 2a_{n}} & \forall n \in IN \end{cases}$$

- 1) a) Calculer yety.
 - b) Démontrer, par récurrence, que pour tout entier naturel n, $0 < q_{\rm s} < 1$.
- 2) a) Démontrer que la suite (a_n) est croissante.
 - b) Démontrer que la suite (u_n) est convergente.
- 3) Soit (V_n) la suite définie, pour tout entier naturel n, par: $V_n = \frac{u_n}{1 u_n}$
 - a) Montrer que: la suite (v_n) est une suite géométrique de raison 3.
 - b) Exprimer pour tout entier naturel n; V_n en fonction de n.
 - c) En déduire que : pour tout entier naturel n ; $a_n = \frac{3^n}{3^n + 1}$.
 - d) Déterminer la limite de la suite (a_n) .

Exercice 3: (3 Pts) Thème: Etude d'une fonction numérique

Partie I:

On considère la fonction g définie sur]-1; + ∞ [par : $g(x) = x + 1 - 2\ln(x + 1)$

www.guessmaths.co <u>E-mail</u>: abdelaliguessouma@gmail.com <u>whatsapp</u>: 0604488896

- 1) Calculer g'(x); puis dresser le tableau de variation de g.
- 2) Calculer g(1); puis déduire que $\forall x \in]-1; +\infty[; g(x) > 0.$

Partie II:

Soit f une fonction définie sur]-1; + ∞ [par: $f(x) = x + 1 - (\ln(x + 1))^2$

- Et $(C_{\!\!f})$ sa courbe représentative dans un repère orthonormé $(O;\vec{i};\vec{j})$
- 1) a) Calculer $\lim_{x \to -1^+} f(x)$; puis interpréter géométriquement le résultat obtenu.
 - b) Calculer $\lim_{x \to +\infty} f(x)$ et montrer que $\lim_{x \to +\infty} \frac{f(x)}{x} = 1$.
 - c) Montrer que (C_{f}) admet une branche parabolique de direction (D): y = x au voisinage de $+\infty$
- 2) a) Monter que : $\forall x \in]-1; +\infty[;f'(x) = \frac{g(x)}{(x+1)}$.
 - b) Montrer que : f est strictement croissante sur $]-1;+\infty[$ puis dresser le tableau de variation de f
- 3) Déterminer une équation de la tangente(T)à la courbe $(C_{\!\!\!+})$ au pointA(0;1).
- 4) a) Montrer que : $\forall x \in [e^{-1}; +\infty[;f(x)-x \leq 0.$
 - b) Étudier les positions relatives de (C_{φ}) et la droite (D): y = x
- 5) a) Montrer que: $\forall x \in]-1; +\infty[; f''(x) = \frac{-2 + 2\ln(x+1)}{(x+1)^2}.$
 - b) Montrer que le point d'abscisse(e-1) est une point d'inflexion à la courbe $(C_{\!\!arphi})$.
- (6) Montrer que: l'équation f(x) = 0 admet une solution unique sur l'intervalle]-1;0[
- 7) Tracer(\mathcal{D}); (\mathcal{T}) et(\mathcal{C}_{f}) la courbe représentative de la fonction f dans le repère orthonormé($\mathcal{O};\vec{i};\vec{j}$).

Partie III:

Soit (u_n) la suite numérique définie sur N par : $\begin{cases} u_n = e \\ u_{n+1} = f(u_n) \end{cases} ; \forall n \in I$

- 1) Montrer que: $\forall n \in IN$; $\mathcal{U}_n \geq e-1$
- 2) Calculer lim U

<u>Partie IV:</u>

Soit In la fonction définie par : $h(x) = \frac{f(x)}{x+1}$; pour tout $x \in]-1; +\infty[$

Déterminer la fonction H, la primitive de la fonction h qui vérifie $\mathcal{H}(D) = D$

<u>www.guessmaths.co</u> <u>E-mail</u>: <u>abdelaliguessouma@gmail.com</u> <u>whatsapp</u>: 0604488896