

Série n°20 exercices corrigés sur « Dérivabilité et Etude de fonction »

2éme Bac SM

Exercice 1

On considère la fonction f définie sur $\left] -\infty; \frac{\pi}{2} \right[par : \begin{cases} f(x) = \sqrt[3]{1-x} + x - 1 & si \ x < 0 \\ f(x) = \operatorname{Arctan}\left(\sqrt[3]{x} + \tan x\right) & si \ x \in \left[0; \frac{\pi}{2}\right] \end{cases}$

Et (C_f) sa courbe représentative dans un repère orthonormé $(O; \vec{i}; \vec{j})$.

- 1) Montrer que f est continue sur $\left]-\infty; \frac{\pi}{2}\right[$.
- 2) a) Calculer $\lim_{x\to -\infty} f(x)$; $\lim_{x\to -\infty} \frac{f(x)}{x}$; $\lim_{x\to 0^+} \frac{f(x)}{x}$ et $\lim_{x\to 0^-} \frac{f(x)}{x}$.
 - b) Interpréter géométriquement les résultats.
 - c) Etudier la branche infinie de (C_f) au voisinage de $-\infty$.
- 3) Soit g la restriction de f à l'intervalle $0; \frac{\pi}{2}$.
 - a- Montrer que g réalise une bijection de $0; \frac{\pi}{2}$ vers lui-même.
 - b-résoudre l'équation $g^{-1}(x) = x$, où g^{-1} est la fonction réciproque de g.
 - c-Résoudre l'inéquation : $g^{-1}(x) < x$.

Corrigé

1) Montrons que est continue sur $]-\infty;\frac{\pi}{2}[$. Comme la fonction : $x\mapsto 1-x$ est continue sur

] $-\infty$;0[(fonction polynomiale)) et comme $\forall x \in$] $-\infty$;0[;1-x > 0 alors la fonction $x \mapsto \sqrt[3]{1-x}$ es continue sur] $-\infty$;0[et par suite la fonction est continue sur] $-\infty$;0[.Comme la fonction:

 $x \mapsto \sqrt[3]{x} + \tan x \, est \, continue \, sur \left[0; \frac{\pi}{2}\right]$ (somme de deux fonctions continues) et comme la

fonction Arctan est continue sur \mathbb{R} alors la fonction : $x \mapsto \operatorname{Arctan}\left(\sqrt[3]{x} + \tan x\right)c.\grave{a}.df$ est continue sur $\left[0; \frac{\pi}{2}\right]$ (composée de fonctions continues).

2) a) On a:
$$\blacktriangleright \lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \sqrt[3]{1-x} + x - 1$$

$$= \lim_{x \to -\infty} \sqrt[3]{-x} \left(\sqrt[3]{\frac{1}{x} + 1} - \frac{\sqrt[3]{(1-x)^3}}{\sqrt[3]{-x}} \right)$$

<u>www.guessmaths.co</u> <u>E-mail</u>: <u>abdelaliguessouma@gmail.com</u> <u>whatsapp</u>: 0604488896

$$= \lim_{x \to \infty} \sqrt[3]{-x} \left(\sqrt[3]{\frac{1}{x}} + 1 - \sqrt[3]{\frac{(1-x)^3}{-x}} \right) = -\infty$$

$$(Car \lim_{x \to \infty} \sqrt[3]{-x} = +\infty \text{ et } \lim_{x \to \infty} -\sqrt[3]{\frac{(1-x)^3}{-x}} = -\infty)$$

$$\downarrow \lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \sqrt[3]{1-x} + x - 1$$

$$= \lim_{x \to \infty} -\sqrt[3]{\frac{1-x}{x}} + 1 - \frac{1}{x} = 1$$

$$(Car \lim_{x \to \infty} -\sqrt[3]{\frac{1-x}{x^3}} = 0 \text{ et } \lim_{x \to \infty} \frac{1}{x} = 0)$$

$$\downarrow \lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \sqrt[3]{1-x} + x - 1$$

$$= \lim_{x \to \infty} \sqrt[3]{1-x} + 1$$

$$= \lim_{x \to \infty$$

<u>www.guessmaths.co</u> <u>E-mail</u>: <u>abdelaliguessouma@gmail.com</u> <u>whatsapp</u>: 060448889

b)
$$\bullet \lim_{x\to 0^{-}} \frac{f(x)}{x} = \frac{2}{3}$$
 donc f est dérivable à gauche en 0 et $f_d'(0) = \frac{2}{3}$

•
$$\lim_{x\to 0^+} \frac{f(x)}{x} = +\infty$$
 donc f n'est pas dérivable à droite en 0 .

c) On a:
$$\lim_{x\to-\infty} \frac{f(x)}{x} = 1$$
; calculons $\lim_{x\to-\infty} (f(x) - x)$

•
$$\lim_{x \to -\infty} (f(x) - x) = \lim_{x \to -\infty} (\sqrt[3]{1 - x} + x - 1 - x)$$
$$= \lim_{x \to -\infty} (\sqrt[3]{1 - x} - 1) = +\infty$$

Donc
$$\lim_{x \to -\infty} \frac{f(x)}{x} = 1$$
 et $\lim_{x \to -\infty} (f(x) - x) = +\infty$ d'où (C_f) admet une branche

parabolique de direction l'axe des ordonnées au voisinage de −∞

3) a- Comme les deux fonctions : $x \mapsto \sqrt[3]{x}$ et $x \mapsto \tan x$ sont strictement croissantes sur $\left[0; \frac{\pi}{2}\right]$ alors la fonction : $x \mapsto \sqrt[3]{x} + \tan x$ est croissante sur $\left[0; \frac{\pi}{2}\right]$ (somme de deux fonctions strictement croissantes)

Et comme la fonction Arctan est strictement croissante sur \mathbb{R} alors la fonction g est strictement croissante sur $\left[0;\frac{\pi}{2}\right[$ (composée de deux fonctions strictement croissantes), e

comme la fonction g est continue sur $\left[0; \frac{\pi}{2}\right]$ (car f l'est), alors la fonction g réalise une

bijection de
$$\left[0; \frac{\pi}{2}\right[\text{vers l'intervalle}\left[0; \frac{\pi}{2}\right[\text{car}; g\left(\left[0; \frac{\pi}{2}\right]\right) = \left[g\left(0\right); \lim_{x \to \frac{\pi}{2}} g\left(x\right)\right]\right]$$

En effet, on
$$a: \lim_{x \to \frac{\pi}{2}} g(x) = \frac{\pi}{2}$$

, puisque
$$\lim_{x \to \frac{\pi}{2}} \sqrt[3]{x} + \tan x = +\infty$$
 et $\lim_{x \to +\infty} \operatorname{Arctan}(x) = \frac{\pi}{2}$.

b-Résolvons l'équation $g^{-1}(x) = x \circ u$ g^{-1} est la fonction réciproque de g.

On a:
$$\left(\forall x \in \left[0; \frac{\pi}{2}\right]\right) g^{-1}(x) = x \Leftrightarrow x = g(x)$$

 $\Leftrightarrow x = \operatorname{Arctan}\left(\sqrt[3]{x} + \tan x\right)$
 $\Leftrightarrow \tan x = \sqrt[3]{x} + \tan x$
 $\Leftrightarrow \sqrt[3]{x} = 0$
 $\Leftrightarrow x = 0$

c-Résolvons l'inéquation : $g^{-1}(x) < x$

<u>www.guessmaths.co</u> <u>E-mail</u>: <u>abdelaliguessouma@gmail.com</u> <u>whatsapp</u>: 0604488896

$$\left(\forall x \in \left[0; \frac{\pi}{2}\right]\right) g^{-1}(x) < x \Leftrightarrow x < g(x) (car \ g \ est \ strictement \ croissante \ et \ g(g^{-1}(x)) = x \right)$$

$$\Leftrightarrow x < \operatorname{Arctan}\left(\sqrt[3]{x} + \tan x\right)$$

$$\Leftrightarrow \tan x < \sqrt[3]{x} + \tan x$$

$$\Leftrightarrow \sqrt[3]{x} > 0$$

Donc l'ensemble des solutions de l'inéquation $g^{-1}(x) < x$ est l'intervalle $\left[0; \frac{\pi}{2}\right]$

Exercice 2

Soit fla fonction définie sur l'intervalle $\left]0; \frac{\pi}{2}\right]$ par : $f(x) = \frac{1}{\sin x}$

1- Montrer que f est une bijection de $\left]0;\frac{\pi}{2}\right]$ sur un intervalle J qu'on déterminera

Notons f^{-1} la fonction réciproque de f

- 2- a) Etudier la dérivabilité de f^{-1} à droite en 1.
 - b) Montrer que f^{-1} est dérivable sur $]1;+\infty[$
 - c) Exprimer f'(x) en fonction de $f(x) = \frac{1}{\sin x}$
 - d) Déterminer $(f^{-1})'(x)$ pour tout $x \in]1;+\infty[$.

Corrigé

1- La fonction f est l'inverse de la fonction : $x \mapsto \sin x$

La fonction $x \mapsto \sin x \operatorname{est} d\acute{e}rivable \operatorname{sur} \mathbb{R}$ et en particulier sur l'intervalle $\left[0; \frac{\pi}{2}\right]$ et

$$\left(\forall x \in \left]0; \frac{\pi}{2}\right]\right); \sin x \neq 0$$

Donc la fonction est dérivable sur $\left[0; \frac{\pi}{2}\right]$ et $f'(x) = \frac{-(\sin x)'}{\sin^2 x}$ $= -\frac{\cos x}{\sin^2 x} \le 0 \text{ sur } \left[0; \frac{\pi}{2}\right]$

Donc f est strictement décroissante sur $\left]0;\frac{\pi}{2}\right]$

Puisque f est dérivable et strictement décroissante sur $\left]0;\frac{\pi}{2}\right]$ alors f est une bijection de

$$\left]0; \frac{\pi}{2}\right] vers f\left(\left[0; \frac{\pi}{2}\right]\right) = \left[1; +\infty\right[$$

<u>www.guessmaths.co</u> <u>E-mail</u> : <u>abdelaliguessouma@gmail.com</u> <u>whatsapp</u> : 0604488896

$$(car: f\left(\frac{\pi}{2}\right) = 1et \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{1}{\sin x} = +\infty)$$

2- a) Etudions la dérivabilité de f^{-1} à droite en1.

On
$$a: f^{-1}(1) = x \Leftrightarrow f(x) = 1$$

$$\Leftrightarrow \frac{1}{\sin x} = 1$$

$$\Leftrightarrow \sin x = 1$$

$$\Leftrightarrow x = \frac{\pi}{2}$$

Et $f'\left(\frac{\pi}{2}\right) = 0$; donc $f^{-1}n$ 'est pas dérivable à droite en1.

b)
$$x \in]1; +\infty[\Leftrightarrow f^{-1}(x) \in]0; \frac{\pi}{2} [et \ f'(x) \neq 0sur]0; \frac{\pi}{2} [$$

Donc f^{-1} est dérivable su]1;+ ∞ [et on a pour tout $x \in$]1;+ ∞ [: $(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$

c) On a pour tout
$$\left]0; \frac{\pi}{2}\right[; f'(x) = -\frac{\cos x}{\sin^2 x}$$

$$= -\frac{\sqrt{1 - \sin^2 x}}{\sin^2 x}$$

$$= -\frac{\sin x \sqrt{\frac{1}{\sin^2 x} - 1}}{\sin^2 x}$$
$$= -\frac{1}{\sin x} \sqrt{\frac{1}{\sin^2 x} - 1}$$
$$= -f(x) \sqrt{(f(x))^2 - 1}$$

d) pour tout $x \in]1;+\infty[$; on a:

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$

$$= \frac{1}{-f(f^{-1}(x))\sqrt{(f(f^{-1}(x)))^2 - 1}}$$

$$= \frac{1}{-x\sqrt{x^2 - 1}}$$

Donc
$$(\forall \in x \in]1; +\infty[); (f^{-1})'(x) = \frac{1}{-x\sqrt{x^2 - 1}}$$

<u>www.guessmaths.co</u> <u>E-mail</u> : <u>abdelaliguessouma@gmail.com</u>

whatsapp: 0604488896