

Série nº 4 exercices « Etude de fonction exponentielle » 2éme Bac SM

EXERCICE 1:

Soit f la fonction définie sur IR par : $f(x) = 2e^{-x} - e^{-2x}$

On note C la courbe de f dans un repère orthonormé et D: y = x

- 1) a) Etudier les variations de f
 - b) Construire C et D
- 2) a) Montrer que g définie sur $[0; +\infty[$ par : g(x) = f(x) x est strictement décroissante sur $[0; +\infty[$
 - b) En déduire que f(x) = x admet une seul solution α dans $[0; +\infty[$ et que $\frac{1}{2} \le \alpha \le 1]$
 - c) Montrer que pour tout x de $\left[\frac{1}{2};1\right]$ on $a:f\left(x\right)\in\left[\frac{1}{2};1\right]$
 - d) Montrer que si $0 \le u \le 1$ alors $0 \le u (1-u) \le \frac{1}{4}$.

En déduire que pour tout x de $\left[\frac{1}{2};1\right]$ on $a:\left|f'(x)\right| \leq \frac{1}{2}$.

- 3) On considère la suite (U_n) définie par : $U_0 = \frac{1}{2}$ et $U_{n+1} = f(U_n)$ pour tout n de \mathbb{N} .
 - a) En utilisant l'inégalité des accroissements finis montrer que : $\left|U_{\scriptscriptstyle n+1}-\alpha\right| \leq \frac{1}{2}\left|U_{\scriptscriptstyle n}-\alpha\right|$
 - b) En déduire que $|U_n \alpha| \le \left(\frac{1}{2}\right)^n$
 - c) Montrer que (U_n) convergente vers α .

EXERCICE 2:

Soit la fonction f définie sur IR par : $f(x) = \frac{1}{2} \ln(1 + e^{-x})$ On désigne par (C) sa courbe représentative dans un repère orthonormé $(O; \vec{i}; \vec{j})$.

- 1- a) Montrer que f est dérivable sur IR et pour tout $x \in \mathbb{R}$, $f'(x) = -\frac{1}{2} \times \frac{1}{1+e^x}$.
 - b) Etudier les variations de f.
 - c) Montrer que la droite Δ : $y = -\frac{1}{2}x$ est une asymptote à (C) au voisinage de $+\infty$.
 - d) Etudier la position relative de (C)et Δ .
- e)Tracer (C) et Δ dans le repère orthonormé $(O; \vec{i}; \vec{j})$ 2- Montrer que l'équation f(x) = x admet dans IR une unique solution α et que $0 < \alpha < 1$.
- 3- a) Montrer que pour tout $x \ge 0$, $|f'(x)| \le \frac{1}{4}$.
 - b) En déduire que pour tout $x \ge 0$, $|f(x) \alpha| \le \frac{1}{4}|x \alpha|$.
- 4. Soit (U_n) la suite définie sur \mathbb{N} par : $U_0 = 0$ et pour tout $n \in \mathbb{N}$, $U_{n+1} = f(U_n)$.

www.guessmaths.co E-mail: abdelaliguessouma@gmail.com whatsapp: 0604488896

- a) Montrer que pour tout $n \in \mathbb{N}$, $U_n \ge 0$.
- b) Montrer que pour tout $n \in \mathbb{N}$, $|U_{n+1} \alpha| \le \frac{1}{4} |U_n \alpha|$.
- c) En déduire que pour tout $n \in \mathbb{N}$, $\left| U_n \alpha \right| \le \left(\frac{1}{4} \right)^n$ et calculer $\lim_{n \to +\infty} U_n$.

EXERCICE 3:

Soit f la fonction définie sur IR par : $f(x) = \frac{e^{2x}}{1+e^x}$ et soit (C) sa courbe représentative dans un repère orthonormé $(O; \vec{i}; \vec{j})$.

<u>Partie A</u>

- 1. Dresser le tableau de variation de f.
- 2. a) Déterminer les branches infinies de (C).
 - b) Tracer (C)
- 3. a) Montrer que f est une bijection de IR vers IR_{+}^{*} .
 - b) Tracer la courbe (C') représentative de la fonction réciproque f^{-1} de f
 - c) Calculer $f^{-1}(x)$ pour x > 0.
- 4. a) Vérifier que pour tout réel x, on $a: f(x) = e^x \frac{e^x}{1 + e^x}$.
 - b) Soit λ un réel strictement négatif. Calculer l'aire $A(\lambda)$ du domaine limité par la courbe (C'), l'axe des ordonnées et les droites d'équations $y = \lambda$ et y = 0.

Partie B

Pour tout entier naturel non nul n et pour tout réel négatif, on pose : $F_n(x) = \int_x^0 \frac{e^{nt}}{1+e^t} dt$.

- 1. a) Calculer $F_1(x)$ et déduire que $\lim_{x\to\infty} F_1(x) = \ln 2$
 - b) Calculer $\lim_{x\to\infty} F_2(x)$.
- 2. a) Montrer que pour tout entier naturel non nul n, on a : $F_{n+1}(x) + F_n(x) = \frac{1}{n}(1-e^{nx})$.
- b) Montrer par récurrence sur n, que $F_n(x)$ admet une limite finie lorsque x tend vers $-\infty$. Dans la suite, on pose $R_n = \lim_{n \to \infty} F_n(x)$.
- 3. a) Vérifier que pour tout réel $t \le 0$, $2e^t \le 1 + e^t \le 2$.
 - b) Montrer que pour tout entier naturel $n \ge 0$ et pour tout réel $x \le 0$, on a :

$$\frac{1}{2n} \left(1 - e^{nx} \right) \le F_n(x) \le \frac{1}{2(n-1)} \left(1 - e^{(n-1)x} \right) .$$

- c) En déduire un encadrement de R_n pour $n \ge 2$.
- 4. Pour tout réel négatif x et pour tout entier naturel non nul, on pose : $G_n(x) = (-1)^n \int_0^0 e^{nt} dt$.
 - a) Calculer $G_n(x)$ et montrer que $\lim_{x \to -\infty} G_n(x) = \frac{(-1)^n}{n}$.
 - b) Montrer que $G_1(x) + G_2(x) + ... + G_n(x) = -F_1(x) + (-1)^n F_{n+1}(x)$.
- 5. On pose, pour tout entier naturel non nul n, $U_n = \sum_{k=1}^{n} \frac{\left(-1\right)^{k-1}}{k}$

- a) Montrer que pour tout entier naturel non nul n; $U_n = \ln 2 + (-1)^{n+1} R_{n+1}$.
- b) Montrer que la suite (U_n) est converge et trouver sa limite.

EXERCICE 4:

- A- Soit g la fonction définie sur IR par : $g(x) = 3x + \sqrt{9x^2 + 1}$ et (C_g) sa courbe représentative dans un repère orthonormé.
- 1) a- Calculer $\lim_{x\to +\infty} g(x)$ et montrer que la droite d'équation y=6x est une asymptote à (C_g) .
 - b-Montrer que l'axe des abscisses est une asymptote à (C_g) en $-\infty$.
- 2) Vérifier que g est strictement croissante sur IR.
- 3) Tracer la courbe (C_g) .
- B- Soit f la fonction donnée par $f(x) = \ln(g(x))$ et (C_f) sa courbe représentative dans un autre repère orthonormé $(O;\vec{i};\vec{j})$.
- 1) a- Justifier que le domaine de définition de f est IR .
 - b- Calculer f(x)+f(-x) et prouver que O est un centre de symétrie de (C_f)
- 2) a- Vérifier que $f'(x) = \frac{3}{\sqrt{9x^2 + 1}}$.
 - b- Ecrire une équation de la tangente (d) en O à (C_f)
 - c- Montrer que O est un point d'inflexion de (C_f) .
- 3) a- Calculer $\lim_{x \to +\infty} f(x)$ et vérifier que $\lim_{x \to +\infty} \frac{f(x)}{x} = 0$.

Déduire
$$\lim_{x \to -\infty} f(x)$$
 et $\lim_{x \to -\infty} \frac{f(x)}{x}$.

- b- Dresser le tableau de variations de f.
- 4) a-Tracer la droite (d) et la courbe (C_i) dans le repère $(O; \vec{i}; \vec{j})$.
 - b-L'équation f(x) = x admet trois racines dont

l'une lpha est positive. Montrer que 2,7 < lpha < 2,9 .

- 5) a-Démontrer que la fonction f admet sur son domaine de définition une fonction réciproque h et tracer sa courbe représentative (C_h) dans le repère orthonormé $(O; \vec{i}; \vec{j})$.
 - b-Montrer que $h(x) = \frac{1}{6}(e^x e^{-x})$.
- 6) On suppose que $\alpha = 2.8$;

Calculer l'aire des deux régions du plan limitées par les deux courbes $(C_{{}_{\mathrm{f}}})$ et $(C_{{}_{\mathrm{h}}})$.

<u>whatsapp</u>: 0604488896