

Examen national 2015 session de rattrapage 2éme Bac SM

Exercice 1:(4 points)

Partie 1

On munit IRde la loi de composition interne * définie par :

$$(\forall (x, y) \in IR^2)$$
 $x * y = x + y - e^{xy} + 1$

- 25 1- a) Montrer que la loi * est commutative dans
- 50 b) Montrer que la loi * admet un élément neutre que l'on déterminera.
- 50 2- Sachant que l'équation: $3+x-e^{2x}=0$ admet dans IRdeux solutions distinctes a et b Montrer que la loi *n'est pas associative dans IR

Partie 2

On rappelle que $(M_2(IR), +, \times)$ est un anneau unitaire non commutatif d'unité $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ et

 $(M_2(IR),+,.)$ est un espace vectoriel réel et que (\mathbb{C}^*,\times) est un groupe commutatif.

Pour tout x et y réels, on pose : M(x, y) =

- 50 1- Montrer que F est un sous-espace vectoriel de l'espace vectoriel réel $(M_2(IR),+,.)$
- 50 2- Montrer que F est stable dans $(M_2(IR), \times)$
 - 3- On considère l'application j de \mathbb{C}^* dans F qui associe à tout nombre complexe x + iy(Où x et y sont deux réels) la matrice M(x, y).
- a) Montrer que j est un homomorphisme de (\mathbb{C}^*,\times) vers (F,\times) 50
- b) On pose: $F^* = F \{M(0,0)\}.$ 25 Montrer que $j(\mathcal{C}^*) = F$
- c) Montrer que (F^*, \times) est un groupe commutatif. 25
- 75 4- Montrer que $(F, +, \times)$ est un corps Commutatif.

Exercice 2: (3 points)

- 0.50 I-1) a étant un entier, montrer que si a et 13 sont premiers entre eux alors $a^{2016} \equiv 1$ [13]
 - 2) On considère dans l'équation (E): $x^{2015} \equiv 2$ [13] et soit x une solution de l'équation(E).
- 0.50 a) Montrer que x et 13 sont premiers entre eux.
- 0.50 *b)* Montrer que : $x \equiv 7$ [13]
- 0.50 3) Montrer que l'ensemble des solutions de l'équation (E) est $S = \{7+13k \mid k \in \mathbb{Z}\}$
 - II Une urne contient 50 boules portant les numéros de 1 à 50 (les boules sont indiscernables au toucher)
- 1- On tire au hasard une boule de l'urne. 0.50

E-mail: abdelaliguessouma@gmail.com

Quelle est la probabilité d'obtenir une boule portant un numéro qui est solution de l'équation (E)?

0.50 2- On tire au hasard une boule de l'urne, on note son numéro, puis on la remet dans l'urne. On répète l'expérience précédente 3 fois .Quelle est la probabilité d'obtenir exactement deux fois une boule portant un numéro qui est solution de l'équation(E)?

Exercice 3: (3 points)

On considère dans l'ensemble C l'équation suivante : $(E): z^2 - (1+i)z + 2 + 2i = 0$

- **0.25** l a) Vérifier que $(1-3i)^2$ est le discriminant de l'équation (E)
- 0.50 b) Déterminer z_1 et z_2 les deux solutions de l'équation (E) dans l'ensemble (E) (on prendra z_1 imaginaire pur).
- **0.50** c) Montrer que: $\frac{z_1}{z_2} = \sqrt{2}e^{i\frac{3\pi}{4}}$
 - 2 Le plan complexe rapporté à un repère orthonormé direct. On considère le point A d'affixe z_1 et le point B d'affixe z_2
- 0.25 a) Déterminer le nombre complexe e affixe du point E milieu du segment [AB]
- 0.50 b) Soit r la rotation de centre A et d'angle $-\frac{\pi}{2}$ et c l'affixe du point C image du point E par la rotation r. Montrer que : $c = -\frac{3}{2} + \frac{3}{2}i$
- 1 c) On considère D le point d'affixe $d = 1 + \frac{3}{2}i$ Montrer que le nombre $\frac{z_2 d}{c d} \times \frac{c z_1}{z_2 z_1}$ est réel puis interpréter géométriquement le résultat obtenu.

Exercice 4 : (6 points)

Soit nun entier naturel non nul.

On considère la fonction f_n à variable réelle x définie sur IR par: $f_n(x) = \frac{1}{1 + e^{-\frac{3}{2}(x-n)}}$.

Soit (C_n) la courbe représentative de la fonction f_n dans un repère orthonormé (O, \vec{i}, \vec{j}) .

- 0.75 1 a) Calculer $\lim_{x\to +\infty} f_n(x)$ et $\lim_{x\to -\infty} f_n(x)$, puis interpréter graphiquement les résultats obtenus.
- 0.75 b) Montrer que la fonction f_n est dérivable IR sur puis calculer $f_n'(x)$ pour tout x de IR
- 0.25 c)Montrer que la fonction f_n est strictement croissante sur IR
- **0.50** 2 a) Montrer que le point $I_n\left(n; \frac{1}{2}\right)$ est le centre de symétrie de la courbe $\left(C_n\right)$
- **0.50** b) Construire la courbe (C_1)
- 0.75 c) Calculer l'aire de la surface plane limitée par la courbe et les droites d'équations x=0; x=1 et y=0

- 0.75 3 a) Pour tout x de IN^* montrer que l'équation $f_n(x) = x$ admet une solution unique u_n dans l'intervalle]0;n[
- **0.50** b) Montrer que: $(\forall n \in IN^*)(\forall x \in IR) \ f_{n+1}(x) < f_n(x)$
- 0.75 c) Monter que la suite (u_n) est strictement décroissante et en déduire qu'elle est convergente.
- **0.50** d) Calculer $\lim_{n \to +\infty} u_n$

Exercice 5: (4 points)

On considère la fonction g définie sur IR^* par: $g(x) = \int_x^{3x} \frac{\cos t}{t} dt$

- 0.50 1- Montrer que la fonction g est paire.
- 0.75 2- Montrer que la fonction g est dérivable sur $]0,+\infty[$ puis calculer g'(x) pour x>0
- 0.50 3- a) En utilisant une intégration par parties, vérifier que:

$$\int_{x}^{3x} \frac{\cos t}{t} dt = \frac{\sin 3x - 3\sin x}{3x} + \int_{x}^{3x} \frac{\sin t}{t^{2}} dt$$

- **0.75** b) Montrer que: $(\forall x > 0) |g(x)| \le \frac{2}{x}$, puis en déduire $\lim_{x \to +\infty} g(x)$.
- 0.50 4 a) Montrer que: $(\forall x > 0)$ $0 \le \int_{x}^{3x} \frac{1 \cos t}{t} dt \le 2x$ $(Remarquer que((\forall t > 0)1 \cos t \le t)$
- **0.50** b) Vérifier que: $(\forall x > 0)$ $g(x) \ln 3 = \int_{x}^{3x} \frac{\cos t 1}{t} dt$
- **0.50** c) En déduire $\lim_{x\to 0^+} g(x)$