

Exercice 11 « Fonction Exponentielle »

Exercice 1

f et g sont les fonctions d'définies sur IR par : $f(x) = -x^2 e^x$ et $g(x) = (x^2 - x - 1)e^x$

- 1. Déterminer les coordonnées des points d'intersection des courbes C_f et C_g représentatives des fonctions f et g.
- 2. Déterminer la position relative de C_f et C_g .
- 3. Déterminer les limites de f et g en $-\infty$ et $+\infty$.
- 4. Dresser les tableaux de variations de f et g.

Exercice 2

Soit f la fonction d'définie sur $[0;+\infty[$ par $: f(x)=(x-1)(2-e^{-x})$. On note C sa courbe représentative dans un repère orthonormé d'unité graphique 2 cm et Δ la droite d'équation y=2x-2 .

- 1. a) Etudier les limites de f en $-\infty$ et $+\infty$.
 - *b)* Etudier la position relative de C et Δ .
- 2. a) Calculer f'(x) et montrer que, pour tout réel x, $f'(x) = xe^{-x} + 2(1 e^{-x})$.
 - b) En d'enduire que, pour tout réel x positif, f'(x) > 0.
 - c) Préciser la valeur f(0), puis 'établir le tableau de variation de f. 3. Avec le plus grand soin, tracer C et Δ dans le même repère.
- 4. Déterminer le point de A de C où la tangente `a C est parallèle `a Δ . Tracer cette tangente dans le repère précédent.

Exercice 3

Soit f la fonction d'définie sur IR par : $f(x) = x + 1 - \frac{2e^x}{e^x + 1}$.

On note C_f sa courbe représentative dans un repère orthogonale.

1. Démontrer que f est une fonction impaire. Que peut-on en d'déduire pour la courbe $C_{\scriptscriptstyle f}$?

Montrer que pour tout réel x, $f(x) = x + 1 - \frac{2}{1 + e^{-x}}$. En d'déduire la limite de f en $+\infty$.

3. a) Montrer que pour tout réel x, $f(x)-(x-1)=\frac{2}{e^x+1}$.

En d'déduire que la droite d'équation Δ d'équation y = x - 1 est asymptote à C_f en $+\infty$ b) préciser la position de C_f par rapport à Δ .

Exercices 4

On considère la fonction f d'définie sur IR par : $f(x) = \frac{1}{e^x + e^{-x}}$, et on d'désigne par C sa courbe représentative.

<u>whatsapp</u>: 0604488896

- 1. Etudier la parité de f. Que peut-on en déduire pour la courbe C?
- 2. Démontrer que, pour tout réel x positif ou nul, $e^{-x} \le e^x$.
- 3. a) Déterminer les limites de f en $+\infty$.

<u>www.guessmaths.co</u> <u>E-mail</u>: <u>abdelaliguessouma@gmail.com</u>

b) Etudier les variations de f sur $[0;+\infty[$, et tracer l'allure de C.

Exercice 5

f est la fonction définie sur IR par $f(x) = (2x+1)e^{-2x}$. C est sa courbe représentative dans un repère orthonormé $(O; \vec{i}, \vec{j})$ (unité graphique 2 cm).

- 1. a) Déterminer la limite de f en $+\infty$ Que peut-on en d'déduire?
- b) Déterminer la limite de f en $-\infty$.
- 2. Dresser le tableau de variation de f.
- 3. a) Déterminer les coordonnées du point A d'intersection de C avec l'axe des abscisses.
- b) Etudier le signe de f(x) suivant les valeurs de x.

Exercice 6

 g_1 et g_2 sont les fonctions d'définies sur IR par $g_1(x) = xe^{-x}$ et, $g_2(x) = x^2e^{-x}$

- 1. a) Etudier les limites de g_1 et g_2 en $-\infty$ et $+\infty$. Interpréter graphiquement ces résultats.
 - b) Etudier le sens de variation de g_1 et g_2
- 2. Dans un repère orthonormé du plan, on note C1 et C2 les courbes représentatives de g1 et g a) préciser la position relative des deux courbes.
 - b) Tracer les deux courbes.
- 3. a) Donner une équation de la tangente à la courbe C1 au point d'abscisse a (a réel).
 - b) Cette tangente coupe l'axe des ordonnées en un point N. Déterminer en fonction de a, l'ordonnée de N.

