

Série nº 24 d'exercices « fonction logarithme »

2éme Bac PC-SVT

Exercice 1:

Partie A:

Soit g définie sur $]0;+\infty[$, par : $g(x)=x+(x-2)\ln x$

- 1) a) montrer que $g'(x) = 2 \times \frac{x-1}{x} + \ln x$
 - b) déduire que : si x > 1 alors g'(x) > 0 et g'(x) < 0 si 0 < x < 1
- 2) a) Etudier les variations de g b) en déduire que $g(x) \ge 1$

Partie B:

Soit f définie sur $]0;+\infty[par: f(x)=1+x\ln x-(\ln x)^2]$

- 1) a) montrer que $f'(x) = \frac{g(x)}{x}$ et étudier les variations de f
 - b) En déduire que f admet une fonction réciproque définie sur un intervalle J que l'on précisera.
- 2) a) Ecrire une équation de la tangente T au point d'abscisse 1
 - b) Etudier les variations de h définie sur $]0;+\infty[par:h(x)=x-1-\ln x;en\ déduire$ le signe de h
 - c)montrer que : $f(x)-x=(\ln x-1)h(x)$, déduire la position de la courbe C par rapport T
- 3) tracer C_f et $C_{f^{-1}}$
- 4) a) calculer: $I_1 = \int_1^e x \ln x \, dx$ et $I_2 = \int_1^e (\ln x)^2 \, dx$

On désigne par A l'aire en de la partie du plan limitée par les courbes $C_{_f}$ et $C_{_{f^{-1}}}$, calculer A

Exercice 2

Partie A

Soit la fonction f définie sur $]0;+\infty[$ par $: f(x)=\frac{1}{x}+\ln x$. On désigne par C_f sa courbe représentative dans un repère orthonormé $(O;\vec{i};\vec{j})$.

- 1) Dresser le tableau de variation de f.
- 2) a) montrer que la courbe C_f admet un point d'inflexion I dont on déterminera les coordonnées.
 - b) Ecrire l'équation de la tangente T au point I.

<u>www.guessmaths.co</u> <u>E-mail</u>: <u>abdelaliguessouma@gmail.com</u> <u>whatsapp</u>: 0604488896

- 3) a) calculer $\lim_{x\to +\infty} \frac{f(x)}{x}$ et interpréter graphiquement ce résultat.
 - b) Tracer C_f .
- 4) Soit α un réel strictement positive supérieur à 1 et $A(\alpha)$ l'aire limitée par la courbe C_f et les droites d'équations x = 1 et $x = \alpha$.
 - a) Calculer $A(\alpha)$.
 - b) Déterminer α pour que : $A(\alpha)$.

Partie B:

Soit g(x) = f(x) - x pour tout x > 0

- 1) Montrer que g réalise une bijection de $]0;+\infty[$ sur $\mathbb R$.
- 2) Calculer g(1) puis montrer que pour tout $x \ge 1$ on $a: f(x) \le x$
- 3) Montrer que g^{-1} est dérivable en 0 et déterminer $(g^{-1})'(0)$.
- 4) Soit (U_n) définie sur \mathbb{N} par : $\begin{cases} U_0 = 2 \\ U_{n+1} = f(U_n) & (\forall n \in \mathbb{N}) \end{cases}$
 - a) Montrer que : $(\forall n \in \mathbb{N})$; $U_n \ge 1$.
 - b) Montrer que $\left(U_{\scriptscriptstyle n}\right)$ est décroissante.
 - c) En déduire que (U_n) est convergente et calculer sa limite.

<u>E-mail</u>: <u>abdelaliguessouma@gmail.com</u>

whatsapp: