

Etude de fonction dérivabilité

2éme Bac PC-SVT

Problème:

<u> 1ère partie :</u>

Soit g la fonction numérique définie sur] $-\infty$; -1] \cup [1; $+\infty$ [par : $g(x) = 2 - x^2 \sqrt{x^2 - 1}$.

- 1- Vérifier que : $x^6 x^4 4 = (x^2 2)(x^4 + x^2 + 2)$
- 2- Etudier le signe de la fonction g sur] $-\infty$; -1] \cup [1; $+\infty$ [

<u>2ème partie</u>:

On considère la fonction numérique f définie sur [-1;1] par : $f(x) = \frac{2x}{\sqrt{x^2 + 3}} - 1$

- 1 Calculer f'(x) pour tout $x \in [-1;1]$.
- 2- Donner le tableau de variations de f sur [-1;1]
- 3- Calculer f(1), puis montrer que : $(\forall x \in [-1,1])$; $f(x) \leq D$

3ème partie:

Soit In la fonction définie sur par : $\begin{cases} h(x) = \frac{2\sqrt{x^2 - 1}}{x} - x + 1 & \text{si } x \in]-\infty; -1[\cup]1; +\infty[\\ h(x) = \sqrt{x^2 + 3} & \text{si } x \in [-1;1] \end{cases}$

Soit (C_n) sa courbe représentative dans un repère orthonormé $(C;\vec{i};\vec{j})$

- 1 Montrer que la fonction h est continue en 1 et -1.
- 2- Montrer que la courbe (ζ_n) admet un centre de symétrie I(0;1) sur l'intervalle

 $\left]-\infty;-1\right[\ \cup\ \left]1;+\infty\right[$

- 3- a Vérifier que lim $h(x) = -\infty$, puis montrer que la droite (\mathcal{D}_1) d'équation y = -x + 3 est une asymptote oblique à la courbe (\mathcal{C}_n) au voisinage de
 - b En déduire par symétrie que la droite (\mathcal{D}_2) d'équation y=-x-1 est une asymptote oblique à la courbe (\mathcal{C}_n) au voisinage de $+\infty$
- 4- Etudier la dérivabilité de h en 1 à droite et interpréter le résultat géométriquement
- 5- a Calculer h'(x) pour tout $x \in]-\infty; -1[\cup]1; +\infty[$
 - b En déduire le signe de h'(x) sur] $-\infty$; $-1[\cup]1; +\infty[$.
- 6- a Calculer h'(x) pour tout $x \in [-1;1]$.
 - b En déduire le signe de h'(x) sur [-1;1].
- 7- Dresser le tableau de variation de f sur IR.
- 8-Donner les équations des demi-tangentes à gauche de 1 et à droite de -1.
- 9- Montrer qu'Il existe un unique réel $\alpha \in \left[\sqrt{2}; +\infty\right[/h(\alpha) = 0$ et que $2 < \alpha < 3$

www.guessmaths.co <u>E-mail</u>: abdelaliguessouma@gmail.com whatsapp: 0604488896

10- $\operatorname{Tracer}(\mathcal{C}_{\!\scriptscriptstyle h})$; la droite $\left(\mathcal{D}_{\!\scriptscriptstyle 1}\right)$ et la droite $\left(\mathcal{D}_{\!\scriptscriptstyle 2}\right)$ dans le repère orthonormé $\left(\mathcal{O};\vec{i}\;;\vec{j}\;\right)$.

<u>4ème partie</u>:

Soit u la restriction de h à l'intervalle

1 - Montrer que u admet une fonction réciproque u^{-1} définie sur un intervalle J à déterminer.

2- Calculer $\left(a^{-1}\right)'(0)$ en fonction de α .

3- Tracer $(C_{h^{-1}})$ dans le repère $(O; \vec{l}; \vec{j})$.

<u>www.guessmaths.co</u> <u>E-mail</u>: <u>abdelaliguessouma@gmail.com</u> <u>whatsapp</u>: 0604488896