Exercice 1 « Généralités sur les fonctions » 1ére Bac Sc.Exp

Comparaison d'expressions et positions relatives de courbes

Exercice 1

On considère les fonctions définies sur $[0; +\infty[$ par : $f(x) = \sqrt{x}$, g(x) = x, $h(x) = x^2$ et $k(x) = x^3$ Étudier les positions relatives de (C_f) , (C_g) , (C_h) et (C_k)

Solution

$$k(x)-h(x) = x^3-x^2 = x^2(x-1).$$

Donc, $si \ x \in [0;1] \ k(x) \le h(x) \ et \ si \ x \in [1;+\infty[\ k(x) \ge h(x).$

C'est-à-dire (C_k) est au-dessous de (C_h) sur [0;1] et au-dessus de (C_h) sur $[1;+\infty[L(C_h)]$ et (C_k) se coupent

au point M(1;1).

$$\blacksquare h(x) - g(x) = x^2 - x = x(x - 1)$$
.

Donc, sur[0;1]; $h(x) \le g(x)$, $etsur[1;+\infty[;h(x) \ge g(x)]$ $e'est-a-dire(C_h)$ est au-dessous $de(C_g)$ sur[0;1] $et(C_h)$ est au-dessus $de(C_g)$ $sud[1;+\infty[.$

 (C_h) et (C_g) se coupent au point M(1;1).

$$g(x)-f(x)=x-\sqrt{x}=\sqrt{x}(\sqrt{x}-1)$$
.

Donc, sur [0;1]; $g(x) \le f(x)$ et $sur [1;+\infty[$; $g(x) \ge f(x)$ c'est-à-dire (C_g) est au-dessous de (C_f) sur [0;1] et (C_g) est au-dessus de (C_f) $sur [1;+\infty[$.

 $\left(C_{g}\right)$ et $\left(C_{f}\right)$ se coupent au point $M\left(1;1\right)$

En conclusion:

Sur $[0;1](C_k)$ est au-dessous de (C_h) ; (C_h) est au-dessous de (C_g) et (C_g) est au-dessous de (C_f) .

Sur $[1; +\infty[(C_k) \text{ est au-dessus de } (C_h), (C_h) \text{ est au-dessus de } (C_g) \text{ et } (C_g) \text{ est au-dessus de } (C_f).$

Toutes ces courbes se coupent au point M(1;1).

Méthode

Pour étudier les positions relatives des courbes représentatives de fonctions on compare les expressions algébriques de ces dernières.

<u>www.guessmaths.co</u> <u>E-mail</u>: <u>abdelaliguessouma@gmail.com</u> <u>whatsapp</u>: 0604488896