Etude de fonction

2éme Bac PC-SVT

Exercice 1: 5 pts

On considère la fonction f définie sur \mathbb{R}^+ par : $f(x) = \frac{\sqrt{x} - 1}{\sqrt{x} + 1}$

- 1) a-Montrer que f est continue sur \mathbb{R}^+ .
 - b-Montrer que la fonction f est strictement croissante sur \mathbb{R}^+
 - c- En déduire f admet une fonction réciproque f^{-1} définie sur un intervalle J à déterminer.
- 2) Déterminer $f^{-1}(x)$ pour tout $x \in J$.

Exercice 2: 11 pts

I. Soit g la fonction définie par : $g(x) = 2x^3 + x^2 - 1$

et (C_g) sa courbe dans un repère orthonormé $(o; \vec{i}; \vec{j})$

- 1/ Calculer $\lim_{x\to -\infty} g(x)$ et $\lim_{x\to +\infty} g(x)$
- 2/ Etudier les variations de g sur IR
- 3/Dresser le tableau de variation de g
- 4/Montrer que l'équation g(x) = 0 admet une solution unique α dans l'intervalle [0;2]
- 5/Déduire le signe de g(x) suivant les valeurs de x et dresser un tableau de signe
- 6/Donner un encadrement de α d'amplitude 0,5

II. Soit f la fonction définie par :
$$f(x) = \frac{x^3 - 2x + 1}{2x^2 - 2x + 1}$$

- $1/Montrer que D_f = IR$
- $2/Calculer \lim_{x \to \infty} f(x)$ et $\lim_{x \to \infty} f(x)$.
- 3/Montrer que f est dérivable sur IR

4/Montrer que:
$$(\forall x \in IR) f'(x) = \frac{xg(x)}{(2x^2 - 2x + 1)}$$

- 5/Dresser le tableau de variation de f sur IR (on prend $f(\alpha) = -0.1$)
- 6/ Déterminer l'image de $]-\infty;0]$ et $]0;\alpha[$
- 7/Montrer que f est strictement positive sur l'intervalle $]1;+\infty[$ (on pourra utiliser f(1))
- 8/Soit h la fonction définie sur]1;+ ∞ [par:h:x $\mapsto \sqrt[3]{f(x)}$
 - a/Montrer que h est dérivable sur $]1;+\infty[$
 - b/calculer h'(x) pour tout x dans $]1;+\infty[$

Exercice 3: 4 pts

Soit la suite
$$(U_n)$$
 définie par :
$$\begin{cases} U_0 = 3 \\ U_{n+1} = 3 - \frac{9}{4U_n} & (\forall n \in \mathbb{N}) \end{cases}$$

- 1/Montrer que : $(\forall n \in \mathbb{N})$; $U_n > \frac{3}{2}$; puis étudier la monotonie de (U_n) .
- $2/On\ pose: V_n = \frac{2}{2U_n 3}; (\forall n \in \mathbb{N})$
 - a) Montrer que (V_n) est une suite géométrique et déterminer sa raison et son premier terme.
 - b) Donner V_n puis U_n en fonction de n.

c) calculer $\lim_{n\to\infty} U_n$

www.guessmaths.co E-mail: abdelaliguessouma@gmail.com whatsapp: 0604488896