

Bac Blanc nº71

2éme Bac PC-SVT

<u>Problème :</u> (11 points)

Partie I:

Soit g la fonction définie sur \mathbb{R} par : $g(x) = 1 - \ln(1 + e^{-x})$

- 1. a) Montrer que : $(\forall x \in \mathbb{R})$; $g(x) = x + 1 \ln(1 + e^x)$
 - b) Résoudre dans \mathbb{R} l'équation : g(x) = x.
 - c) Montrer que : $(\forall x \in \mathbb{R})$: $g(x) \ge x \Leftrightarrow x \le \ln(e-1)$
- 2. a) Calculer $\lim_{x\to -\infty} g(x)$ et $\lim_{x\to +\infty} g(x)$ et interpréter géométriquement les résultats obtenus.
 - b) Montrer que $g'(x) = \frac{e^{-x}}{1 + e^{-x}}$ et dresser le tableau de variations de g sur \mathbb{R} .
- c) Montrer que la droite (D) d'équation y = x + 1 est une asymptote à la courbe de g au voisinage $de -\infty$.
- 3. a) Montrer que : $(\forall x \in \mathbb{R}^+)$; $g(x) \ge 0$
 - b) Montrer que : $(\forall x \in \mathbb{R}^+)$; $1+x \ge \ln(1+e^x)$, puis déduire que : $(\forall x \in \mathbb{R}^+)$; $e \times e^x 1 \ge e^x$

Partie II

On considère la fonction f définie sur \mathbb{R} par : $\begin{cases} f(x) = 2(x-1)e^x & ; si \ x \le 1 \\ f(x) = 2\sqrt{\ln(x)} & ; si \ x > 1 \end{cases}$

- , et (C_f) la courbe représentative de la fonction f dans un repère orthonormé $(O;\vec{i}\;;\vec{j}\;)$ d'unité $\|\vec{i}\,\|=1$ cm .
- 1. a) Montrer que f est continue en 1.
 - b) Étudier la dérivabilité de f à gauche et à droite en 1 et interpréter graphiquement les résultats obtenus.
 - c) Calculer $\lim_{x\to -\infty} f(x)$ et $\lim_{x\to +\infty} f(x)$ et interpréter graphiquement les résultats obtenus.
 - d) Étudier la branche infinie de (C_f) au voisinage de $+\infty$.

e) Montrer que: $\begin{cases} f'(x) = 2xe^x & ; si x < 1 \\ f'(x) = \frac{1}{x\sqrt{\ln(x)}} & ; si x > 1 \end{cases}$

- f) Étudier le signe de f'(x)et dresser le tableau de variations de f.
- g) Calculer f''(x)et montrer que (C_f) admet un unique point d'inflexion d'abscisse négative.

<u>www.guessmaths.co</u> <u>E-mail</u>: <u>abdelaliguessouma@gmail.com</u> <u>whatsapp</u>: 0604488896

- h) $Tracer(C_f)$.
- 2. a) En utilisant une intégration par parties, calculer les intégrales $I = \int_0^1 (x-1)e^x dx$ et $J = \int_1^e \ln(x) dx$
 - b) Calculer en cm² , A l'aire du domaine $limité par\left(C_f\right)$; l'axe de abscisses, l'axe des ordonnées et la droite d'équation x=1 .
 - c) $Encm^3$, calculer le volume du solide de révolution engendré par la rotation autour de l'axe des abscisses de la portion de (C_f) sur l'intervalle [1;e].

Partie III

On considère la suite numérique (u_n) définie par : $u_0 = \frac{1}{e}$ et $u_{n+1} = 1 - \ln(1 + e^{-u_n})$ pour tout $n \in \mathbb{N}$.

- 1. Montrer par récurrence que : $(\forall n \in \mathbb{N})$; $0 \le u_n \le \ln(e-1)$
- 2. Montrer que la suite (u_n) est croissante.
- 3. Déduire que (u_n) est convergente ; puis calculer sa limite.

Exercice 1: (3 points)

Dans l'espace muni d'un repère orthonormé direct $\left(O;\vec{i}\;;\vec{j};\vec{k}\;
ight)$, on considère les points

A(1;0;1); B(2;1;1) et C(-1;2;-3).

- 1. Calculer la distance AB.
- 2. Calculer $\overrightarrow{AB} \wedge \overrightarrow{AC}$. Est-ce que les point A; B et C sont alignés? Justifier?
- 3. Calculer $\overrightarrow{AB}.\overrightarrow{AC}$; déduire que le triangle ABC est rectangle en A?
- 4. Montrer que l'équation cartésienne du plan (ABC) est x y z = 0.
- 5. Considérons (S) l'ensemble des points M(x; y; z) de l'espace tels que

$$x^{2} + y^{2} + z^{2} + 2x - 2y + 4z - 6 = 0$$

- a) Montrer que (S) est une sphère dont le centre $\Omega(-1;1;-2)$ et de rayon R=4.
- b) Calculer la distance de l au plan (ABC). Puis montrer que le plan (ABC) coupe la sphère (S) selon un cercle de centre H à déterminer et de rayon r à calculer.

Exercice 2: (3 points)

Dans le plan complexe rapporté à un repère orthonormé direct (0,7,7), on considère les points A, B, C et D d'affixes respectives a=1+2i; b=i; c=3i et d=1+2i

- 1. Résoudre dans \mathbb{C} l'équation suivante : $z^2 12z + 72 = 0$
- 2. a) Montrer que $\frac{c-a}{b-a} = -i$
 - b) Déduire que AC = AB et déterminer une mesure de l'angle $(\overrightarrow{AB}; \overrightarrow{AC})$, puis déterminer la nature du triangle ABC.

<u>www.guessmaths.co</u> <u>E-mail</u>: <u>abdelaliguessouma@gmail.com</u> <u>whatsapp</u>: 0604488896

- c) Calculer (d-b)(a-b) et déduire que $BD \times AB = 2$
- 3. Soit R la rotation de centre A et d'angle $\frac{\pi}{4}$ qui transforme le point M(z) en M'(z').

a) Montrer que :
$$z' = \sqrt{2}z\left(\frac{1}{2} + \frac{1}{2}i\right) + \sqrt{2}\left(\frac{1}{2} - \frac{3}{2}i\right) + 1 + 2i$$

- b) Montrer que l'affixe d du point D l'image de B par la rotation R est $d=1-\left(\sqrt{2}+2\right)i$
- c) On considère le point H d'affixe h = -5i.

Calculer $\frac{h-c}{b-c}$ et déduire que les points H, C et B sont alignés

- d) Montrer que H est l'image de B par une homothétie de centre C et de rapport k à déterminer.
- 4. On considère les points K et L d'affixes respectives k = -1 + 2i . Montrer que ABKC est un losange

Exercice 3: (3 points)

Une urne contient. 7 boules indiscernables au toucher: 4 boules blanches et 3 boules noires. On tire au hasard 2 boules successivement et sans remise.

- 1. Calculer la probabilité des événements suivants :
 - a) A: «Tirer deux boules de même couleur »
 - b) B: «Tirer au moins une boule noire »
 - c) C: «La deuxième boule tirée est blanche »
- 2. Soit X la variable aléatoire qui associe à chaque tirage le nombre de boules noires tirées.
 - a) Donner la loi de probabilité de la variable X
 - b) Calculer E(X); $E(X^2)$; en déduire V(X) et $\sigma(X)$.

<u>www.guessmaths.co</u> <u>E-mail</u>: <u>abdelaliguessouma@gmail.com</u> <u>whatsapp</u>: 060448889