Exercice 01:

✓ Calculer chacune des limites suivantes :

$$\lim_{x \to -\infty} x \left(\sqrt{x^2 + 1} - x \right); \lim_{x \to 0} \frac{1}{x^2} \left(\frac{2}{\cos x} + \cos x - 3 \right) et \lim_{x \to 0} \frac{\sqrt{1 + x} - \left(1 + \frac{x}{2} \right)}{x^2}.$$

Exercice 02:

Soit f la fonction définie sur par : $\begin{cases} f(x) = \frac{mx - 1}{x^2 + 2} & \text{; si } x \le 2 \\ f(x) = \frac{\sqrt{x^2 - 5x + 10} - 2}{x - 2} & \text{; si } x > 2 \end{cases}$

- 1)- Calculer les limites suivantes : $\lim_{x \to a} f(x)$, $\lim_{x \to a} f(x)$ et $\lim_{x \to a} f(x)$
- (2)- a)- Justifier que f est continue sur chacun des intervalles $]-\infty;2]$ et $]2;+\infty[$. b)- Pour quelle valeur de m la fonction f est-elle continue sur \mathbb{R} ?

Exercice 03:

- (1)- Montrer que l'équation : $\frac{2x+1}{x^2+1} = x$ admet une solution unique α dans]1;2[.
- 2)- En utilisant la méthode de dichotomie, donner un encadrement de α à 0,5 près.

Exercice 04:

Soit f la fonction définie sur $]-\infty;0]$ par : $f(x)=\frac{x^2-3}{x^2+2}$.

- (1) Calculer $\lim f(x)$; puis justifier que f est continue sur l'intervalle $]-\infty;0]$.
- 2) Montrer que : $(\forall x \in]-\infty;0]$; $f'(x) = \frac{10x}{(x^2+2)^2}$. Puis en déduire la monotonie de f sur
- $]-\infty;0].$
-)- a)- Montrer que f admet une fonction réciproque f^{-1} définie sur $\left|-\frac{3}{2};1\right|$.
 - b)-Montrer que: $\left(\forall x \in \left[-\frac{3}{2}; 1\right]\right)$; $f^{-1}(x) = -\sqrt{\frac{3+2x}{1-x}}$.
-)- a)- Montrer que l'équation : $x^3 x^2 + 2x + 3 = 0$ admet une solution unique c dans l'intervalle] -1;0[.
 - b)- Vérifier que : f(c) = c, puis en déduire que : $f^{-1}(c) = f(c)$.