

GUESSMATHS

Revue nº2 :

Chapitre « Dérivabilité et étude de fonction» 2éme Bac SC. Expérimentales et Sc. Eco

ZONE PUBLICITAIRE

Contenue du chapitre:

- -Résumé du cours
- Exercices d'application
- Astuces et méthodes
- Série d'exercices corrigés

1er Conseil aux bacheliers afin de bien préparer leur Examen Comme dit le proverbe français « rien ne se perd rien ne se crée de tout se transforme »

Alors le secret de la réussite c'est de travailler régulièrement.

Dérivabilité et étude de fonction

1) Fonction dérivable

Définition:

On dit que la fonction f est <u>dérivable</u> en a s'il existe un nombre réel ℓ , tel que :

$$\lim_{h\to 0}\frac{f(a+h)-f(a)}{h}=\mathbf{\ell}.$$

lest appelé le nombre dérivé de f en a.

2) Tangente à une courbe

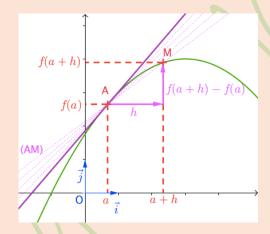
Soit une fonction f définie sur un intervalle I et dérivable en un nombre réel a appartenant à I.

l est le nombre dérivé de f en a.

A est un point d'abscisse a appartenant à la courbe représentative $(C_{\!\scriptscriptstyle{\mathcal{F}}})$ de f.

Définition:

La <u>tangente</u> à la courbe (C_{φ}) au point A est la droite passant par A de coefficient directeur le nombre dérivé ℓ .



Propriété:

Une équation de la tangente à la courbe (C_F) en A est : Y = f'(a)(x - a) + f(a)

Exemple:

On considère la fonction trinôme f définie sur \mathbb{R} par : $f(x) = x^2 + 3x - 1$.

On veut déterminer une équation de la tangente à la courbe représentative de f au point A de la courbe d'abscisse 2.

$$\lim_{h \to 0} \frac{f(2+h) - f(2)}{h} = \lim_{h \to 0} \frac{(2+h)^2 + 3(2+h) - 1 - 9}{h} = \lim_{h \to 0} \frac{h^2 + 7h}{h} = \lim_{h \to 0} (h+7) = 7$$

Le coefficient directeur de la tangente est égal à 7.

Donc son équation est de la forme : y = 7(x-2) + f(2), soit : y = 7(x-2) + 9

$$y = 7x - 5$$

Une équation de tangente à la courbe représentative de f au point A de la courbe d'abscisse 2 est y = 7x - 5.

3) Formules de dérivation des fonctions usuelles:

Fonction f	Ensemble de définition de f	Dérivée f'	Ensemble de définition de f'
$f(x) = a, a \in \mathbb{TR}$	IR	f'(x) = 0	IR
$f(x) = ax$, $a \in IR$	IR	f'(x) = a	IR
$f(x) = x^2$	IR	f'(x) = 2x	IR
$f(x) = x^n$ $n \ge 1 \text{ entier}$	IR	$f'(x) = nx^{n-1}$	IR
$f(x) = \frac{1}{x}$	IR\{0}	$f'(x) = -\frac{1}{x^2}$	IR\{0}
$f(x) = \frac{1}{x^n}$ $n \ge 1 \text{ entier}$	IR\{0}	$f'(x) = -\frac{n}{x^{n+1}}$	IR\{0}
$f(x) = \sqrt{x}$	$[0;+\infty[$	$f'(x) = \frac{1}{2\sqrt{x}}$]0;+∞[

Exemples:

a) Soit la fonction f définie sur IR par : $f(x) = x^6$ alors f est dérivable sur IR et on a pour tout x de IR, $f'(x) = 6x^5 f'(x) = 6x^5$.

- b) Soit la fonction f définie sur $IR \setminus \{0\}$ par $: f(x) = \frac{1}{x^4}$ alors f est dérivable sur $]-\infty;0[$ et sur $]0;+\infty[$ et on a pour tout x de $IR \setminus \{0\}$, $f'(x) = -\frac{4}{x^5}$.
- 4) <u>Formules d'opération sur les fonctions dérivées</u>: u et v sont deux fonctions dérivables sur un intervalle I.

u+v est dérivable sur I	(u+v)'=u'+v'
ku est dérivable sur I, où k est une constante	(ku)' = ku'
uv est dérivable sur I	(uv)' = u'v + uv'
$\frac{1}{u}$ est dérivable sur I, où u ne s'annule pas sur I	$\left(\frac{1}{u}\right)' = -\frac{u'}{u^2}$
$\frac{u}{v}$ est dérivable sur I, où v ne s'annule pas sur I	$\left(\frac{u}{v}\right) = \frac{u'v - uv'}{v^2}$

ZONE PUBLICITAIRE

Exemples:

a)
$$f(x) = (2x^2 - 5x)(3x - 2)$$

On pose $f(x) = u(x) \times v(x)$ avec $u(x) = 2x^2 - 5x \Rightarrow u'(x) = 4x - 5$
 $v(x) = 3x - 2 \Rightarrow v'(x) = 3$
Donc: $f'(x) = u'(x) \times v(x) + u(x) \times v'(x)$
 $= (4x - 5) + 3(2x^2 - 5x)(3x - 2)$
 $= 12x^2 - 8x - 15x + 10 + 6x^2 - 15x$
 $= 18x^2 - 38x + 10$

b)
$$g(x) = \frac{6x - 5}{x^3 - 2x^2 - 1}$$

On pose
$$g(x) = \frac{u(x)}{v(x)}$$
 avec $u(x) = 6x - 5 \Rightarrow u'(x) = 6$

$$V(x) = x^3 - 2x^2 - 1 \Rightarrow V'(x) = 3x^2 - 4x$$

$$V(x) = x^{3} - 2x^{2} - 1 \Rightarrow V'(x) = 3x^{2} - 4x$$

$$Ponc : g'(x) = \frac{u'(x) \times V(x) - u(x) \times V'(x)}{(V(x))^{2}}$$

$$= \frac{6(x^{3} - 2x^{2} - 1) - (6x - 5)(3x^{2} - 4x)}{(x^{3} - 2x^{2} - 1)^{2}}$$

$$= \frac{6x^{3} - 12x^{2} - 6 - 18x^{3} + 24x^{2} + 15x^{2} - 20x}{(x^{3} - 2x^{2} - 1)^{2}}$$

$$= \frac{-12x^{3} + 27x^{2} - 20x - 6}{(x^{3} - 2x^{2} - 1)^{2}}$$

5) Application à l'étude des variations d'une fonction

Théorème:

Soit une fonction f définie et dérivable sur un intervalle I.

- $Sif'(x) \le 0$, alors f est décroissante sur I.
- Sif'(x) ≥ 0 , alors f est croissante sur I.

Exemple:

Soit la fonction f définie sur IR par : $f(x) = x^2 - 4x$.

Pour tout x réel, on a : f'(x) = 2x - 4.

Résolvons l'inéquation $f'(x) \leq 0$

$$f'(x) \le 0 \Leftrightarrow 2x - 4 \le 0$$

 $\Leftrightarrow x \le 2$

La fonction f est donc décroissante sur l'intervalle $]-\infty;2]$.

De même, on obtient que la fonction f est croissante sur l'intervalle $[2;+\infty[$.

II. Dérivées de fonctions composées

1) Dérivée de la fonction $x \mapsto \sqrt{a(x)}$

Propriété:

u est une fonction strictement positive et dérivable sur un intervalle I.

Alors la fonction f définie sur I par $f(x) = \sqrt{a(x)}$ est dérivable sur I et on a :

$$f'(x) = \frac{u'(x)}{2\sqrt{u(x)}}$$

Exemple:

$$f(x) = \sqrt{3x^2 + 4x - 1}$$

On pose
$$f(x) = \sqrt{u(x)}$$
 avec $u(x) = 3x^2 + 4x - 1 \Rightarrow u'(x) = 6x + 4$

Donc:
$$f'(x) = \frac{u'(x)}{2\sqrt{u(x)}}$$

= $\frac{6x + 4}{2\sqrt{3x^2 + 4x - 1}} = \frac{3x + 2}{\sqrt{3x^2 + 4x - 1}}$

2) Dérivée de la fonction $x \mapsto (a(x))^n$

Propriété:

n est un entier relatif non nul. u est une fonction dérivable sur un intervalle I ne s'annulant pas sur I dans le cas où n est négatif.

Alors la fonction f définie sur I par $f(x) = (u(x))^n$ est dérivable sur I et on a : $f'(x) = u u'(x) (u(x))^{n-1}$.

Exemple:

$$f(x) = (2x^2 + 3x - 3)^4$$

On pose
$$f(x) = (u(x))^4$$
 avec $u(x) = 2x^2 + 3x - 3 \Rightarrow u'(x) = 4x + 3$

Donc:
$$f'(x) = 4a'(x)(a(x))^3$$

= $4(4x+3)(2x^2+3x-3)^3$

ZONE PUBLICITAIRE

3) Dérivée de la fonction $x \mapsto f(ax + b)$

Propriété:

a et b sont deux nombres réels. f est une fonction dérivable sur un intervalle I. Alors la fonction g définie sur I par g(x) = f(ax + b)est dérivable sur tout intervalle J tel que pour tout $x \in J$, $(ax + b) \in I$ et on a : g'(x) = af'(ax + b).

Exemple:

Soit
$$f(x) = \frac{1}{5x - 4}$$

Alors
$$f'(x) = (5x - 4)' \times \frac{-1}{(5x - 4)^2} = \frac{-5}{(5x - 4)^2}$$

En effet:
$$(5x - 4)' = 5et \left(\frac{1}{x}\right)' = -\frac{1}{x^2}$$

4) Formules de dérivation sur les fonctions composées

Fonction	Ensemble de	Dérivée
	définition	120
$\sqrt{a(x)}$	$\sqrt{u(x)} > 0$	$\frac{u'(x)}{2\sqrt{u(x)}}$
u^n avec $n \in \mathbb{Z}^* \mathbb{Z}$	$Sin < D$, $u(x) \neq D$	nu'u ⁿ⁻¹
f(ax+b)	f dérivable	af'(ax+b)
$f \circ g(x)$	f et g sont dérivables respectivement sur leurs domaines de définition	$g'(x) \times f'(g(x))$

<u>Méthode</u>:

Etude d'une fonction composée

On considère la fonction f définie par : $f(x) = \sqrt{\frac{2x}{3x+1}}$.

On note C sa courbe représentative dans un repère.

- 1) Déterminer l'ensemble de définition de f.
- 2) Etudier les limites de f aux bornes de son ensemble de définition et en déduire les équations des asymptotes à la courbe C.
- 3) Etudier la dérivabilité de f.
- 4) Etudier les variations de f.

1) La fonction racine carrée est définie sur [D; +∞[donc la fonction f est définie pour tout ; vérifiant $\frac{2x}{3x+1} \ge 0$.

On dresse le tableau de signe :

Х		$-\frac{1}{3}$		D	+∞
2x	1		-	D	+
3x +1	1	D	+		+
$\frac{2x}{3x+1}$	+		-	Q	+

Donc la fonction f est définie sur
$$\left]-\infty; -\frac{1}{3}\right[\cup [0; +\infty[$$
.

2) - Recherche des limites à l'infini:

La limite de la fonction rationnelle sous la racine est une forme indéterminée.

Levons l'indétermination :
$$\frac{2}{3+\frac{1}{x}}$$

Or
$$\lim_{x \to +\infty} 3 + \frac{1}{x} = 3$$
 donc $\lim_{x \to +\infty} \frac{2x}{3x+1} = \frac{2}{3}$

De plus,
$$\lim_{x \to \frac{2}{3}} \sqrt{x} = \sqrt{\frac{2}{3}}$$

On en déduit, comme limite de fonction composée, que : $\lim_{x\to +\infty} f(x) = \sqrt{\frac{2}{3}}$.

On démontre de même que :
$$\lim_{x \to \infty} f(x) = \sqrt{\frac{2}{3}}$$
.

Ainsi la droite d'équation $y = \sqrt{\frac{2}{3}}$ est asymptote horizontale à la courbe C en $+\infty$ et

-Recherche de la limite de f à gauche en $-\frac{1}{3}$:

$$\lim_{x \to \left(-\frac{1}{3}\right)^{-}} (3x+1) = 0 \text{ et } \lim_{x \to \left(-\frac{1}{3}\right)^{-}} 2x = -\frac{2}{3} \text{ donc } \lim_{x \to \left(-\frac{1}{3}\right)^{-}} \frac{2x}{3x+1} = +\infty.$$

En effet, pour $x < -\frac{1}{3}$ on a:3x+1<0.

De plus
$$\lim_{x \to +\infty} \sqrt{x} = +\infty$$

Donc, comme limite de fonction composée, on a : $\lim_{x \to \left(-\frac{1}{3}\right)^{-}} f(x) = +\infty$.

Ainsi la droite d'équation $x = -\frac{1}{3}$ est asymptote verticale à la courbe C.

3)
$$\frac{2x}{3x+1}$$
 est strictement positive et dérivable sur $]-\infty; -\frac{1}{3}[\ \cup\]0; +\infty[\ .$

Comme dérivée de fonction composée, f est dérivable sur $]-\infty; -\frac{1}{3}[\ \cup\]0; +\infty[\ .$

Etudions la dérivabilité de f en 0:

$$\lim_{\substack{h \to 0 \\ h > 0}} \frac{f(h) - f(0)}{h} = \lim_{\substack{h \to 0 \\ h > 0}} \frac{\sqrt{\frac{2h}{3h+1}} - 0}{h}$$

$$= \lim_{\substack{h \to 0 \\ h > 0}} \frac{1}{h} \sqrt{\frac{2h}{3h+1}}$$

$$= \lim_{\substack{h \to 0 \\ h > 0}} \sqrt{\frac{1}{h^2} \times \frac{2h}{3h+1}}$$

$$= \lim_{\substack{h \to 0 \\ h > 0}} \sqrt{\frac{2}{3h^2 + h}} = +\infty$$

On en déduit que la fonction f n'est pas dérivable en D.

4) Pour tout réel x de
$$\left]-\infty; -\frac{1}{3}\right[\cup]0; +\infty[$$
, on pose $u(x) = \frac{2x}{3x+1}$.

$$a'(x) = \frac{2(3x+1)-3\times 2x}{(3x+1)^2}$$
$$= \frac{6x+2-6x}{(3x+1)^2}$$
$$= \frac{2}{(3x+1)^2}$$

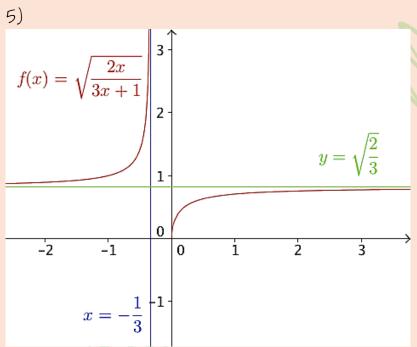
ZONE PUBLICITAIRE

$$Donc: f'(x) = \frac{2}{(3x+1)^2} \times \frac{1}{2\sqrt{\frac{2x}{3x+1}}} \quad \text{Et donc}: \left(\forall x \in \left] -\infty; -\frac{1}{3} \right[\cup \left] 0; +\infty \right[\right); f'(x) > 0$$

Par conséquent la fonction f est croissante sur $-\infty; -\frac{1}{3}$ et sur $]0; +\infty[$.

On dresse le tableau de variations : f(D) = D

χ		$-\frac{1}{3}$) +∞
f'(x)	+	//////////////////////////////////////	+
f(x)	$\sqrt{\frac{2}{3}}$	///////////////////////////////////////	$\sqrt{\frac{2}{3}}$



5) Interprétation géométrique d'une dérivée

a) <u>Dérivabilité en un point</u>

On sait que la dérivée en un point x_0 notée $f'(x_0)$ est le nombre dérivé mais aussi c'est le coefficient directeur de la tangente à la courbe de f au point d'abscisse x_0 .

Donc:

• $si \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = l \in \mathbb{IR}$; $alors f'(x_0) = l$ on interprète le résultat par :

« la courbe de f admet une tangente au point d'abscisse x_0 de coefficient directeur $f'(x_0) = l$ ».

b) Dérivabilité à droite ou à gauche en un point

• $si \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} = l \in IR$ (respectivement $\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} = l \in IR$; alors on interprète le résultat par :

« f est pas dérivable à droite en x_0 et $f_a'(x_0) = l$ la courbe de f admet une demi-tangente à droite au point d'abscisse x_0 de coefficient directeur $f_a'(x_0) = l$ (respectivement f est pas dérivable à gauche en x_0 et $f_g'(x_0) = l$ la courbe de f admet une demi-tangente à gauche au point d'abscisse x_0 de coefficient directeur $f_a'(x_0) = l$ ».

• $\sin \lim_{x \to x^+_0} \frac{f(x) - f(x_0)}{x - x_0} = \pm \infty$; alors on interprète le résultat par :

« f n'est pas dérivable à droite en x_0 et la courbe de f admet une demi-tangente à droite au point d'abscisse x_0 dirigée vers le haut si le résultat est $+\infty$ ou dirigée vers le bas si le résultat est $+\infty$ ».

• $\sin \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} = \pm \infty$; alors on interprète le résultat par :

« f n'est pas dérivable à gauche en x_0 et la courbe de f admet une demi-tangente à droite au point d'abscisse x_0 dirigée vers le haut si le résultat est $-\infty$ ou dirigée vers le bas si le résultat est $+\infty$ ».

ZONE PUBLICITAIRE

EXERCICE 1

Soit f la fonction définie par : $f(x) = 2x + \sqrt{1 - x^2}$

- 1) Déterminer le domaine de définition de f.
- 2) a- Étudier la dérivabilité de **f** à droite en -1 et à gauche en 1.

b-Interpréter géométriquement les résultats précédents.

Correction

1)
$$\mathcal{D}_f = \{x \in \mathbb{IR} / 1 - x^2 \ge 0\}$$

= $\{x \in \mathbb{IR} / x^2 \le 1\}$
= $\{x \in \mathbb{IR} / -1 \le x \le 1\}$

 $\mathcal{D}onc$ $\mathcal{D}_f = [-1;1]$

2) a- e+ b- • Calculons
$$\lim_{x \to -1^+} \frac{f(x) - f(-1)}{x+1}$$

On a:
$$\lim_{x \to -1^{+}} \frac{f(x) - f(-1)}{x + 1} = \lim_{x \to -1^{+}} \frac{2x + \sqrt{1 - x^{2}} + 2}{x + 1}$$

$$= \lim_{x \to -1^{+}} \frac{\sqrt{1 - x} \sqrt{1 + x} + 2(x + 1)}{x + 1}$$

$$= \lim_{x \to -1^{+}} \frac{\left(\sqrt{1 - x} + 2\sqrt{1 + x}\right) \sqrt{1 + x}}{x + 1}$$

$$= \lim_{x \to -1^{+}} \frac{\left(\sqrt{1 - x} + 2\sqrt{1 + x}\right) \sqrt{1 + x}}{\sqrt{1 + x}}$$

$$= \lim_{x \to -1^{+}} \frac{\left(\sqrt{1 - x} + 2\sqrt{1 + x}\right) \sqrt{1 + x}}{\sqrt{1 + x}}$$

$$\operatorname{Ponc} \lim_{x \to -1^+} \frac{f(x) - f(-1)}{x + 1} = +\infty$$

Par suite f n'est pas dérivable à droite en -1 et C_f admet une demitangente

verticale dirigée vers le haut à droite du point d'abscisse -1

• Calculons
$$\lim_{x \to 1^{-}} \frac{f(x) - f(1)}{x - 1}$$

On a:
$$\lim_{x \to 1^{-}} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^{-}} \frac{2x + \sqrt{1 - x^{2}} - 2}{x - 1}$$
$$= \lim_{x \to 1^{-}} \frac{\sqrt{1 - x} \sqrt{1 + x} + 2(x - 1)}{x - 1}$$

$$= \lim_{x \to 1^{-}} \frac{\left(\sqrt{1+x} + 2\sqrt{1-x}\right)\sqrt{1-x}}{x-1}$$

$$= \lim_{x \to 1^{-}} \frac{\left(\sqrt{1+x} + 2\sqrt{1-x}\right) \nearrow \sqrt{2}}{\sqrt{1-x}}$$

$$\searrow 0^{+}$$

$$\operatorname{Ponc} \lim_{x \to 1^{-}} \frac{f(x) - f(1)}{x - 1} = +\infty$$

Par suite f n'est pas dérivable à gauche en 1 et C_F admet une demi-tangente verticale dirigée vers le bas à gauche du point d'abscisse1.

EXERCICE 2

Soit f la fonction définie sur IR par : $\begin{cases} f(x) = \sqrt[3]{x^3 + 3x^2} ; x \ge 0 \\ f(x) = 4\sqrt{1-x} + x - 4 ; x < 0 \end{cases}$

- 1) Montrer que f est continue $enx_0 = 0$.
- 2) Étudier la dérivabilité de f en $x_0=0$, puis donner une interprétation géométrique des résultats trouvés.

Correction

1) On
$$a: f(x) = \sqrt[3]{x^3 + 3x^2}$$
; $x \ge 0$; donc $f(0) = 0$
Et $f(x) = 4\sqrt{1-x} + x - 4$; $x < 0$; calculous $\lim_{x \to 0^-} f(x)$

•
$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} 4\sqrt{1-x} + x - 4 = 0$$

$$\mathcal{D}'o\dot{a} \lim_{x \to 0^{-}} f(x) = f(0)$$

Par suite f est continue en O.

2) • Calculons
$$\lim_{x\to 0^+} \frac{f(x)-f(0)}{x}$$

On a:
$$\lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x} = \lim_{x \to 0^{+}} \frac{\sqrt[3]{x^{3} + 3x^{2}}}{x}$$

$$=\lim_{x\to 0^+} \frac{\sqrt[3]{x^3\left(1+\frac{3}{x}\right)}}{x}$$

$$= \lim_{x \to 0^{+}} \frac{\sqrt[3]{x^{3}} \times \sqrt[3]{\left(1 + \frac{3}{x}\right)}}{x}$$

$$= \lim_{x \to 0^{+}} \frac{x \times \sqrt[3]{\left(1 + \frac{3}{x}\right)}}{x}$$

$$= \lim_{x \to 0^{+}} \sqrt[3]{\left(1 + \frac{3}{x}\right)} = +\infty$$

Par suite f n'est pas dérivable à droite en 0 et C, admet une demi-tangente verticale dirigée vers le haut à droite du point d'abscisse 0

• Calculons
$$\lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x}$$

On a: $\lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x} = \lim_{x \to 0^{-}} \frac{4\sqrt{1 - x} + x - 4}{x}$

$$= \lim_{x \to 0^{-}} \left(\frac{4\sqrt{1 - x} - 4}{x} + 1 \right)$$

$$= \lim_{x \to 0^{-}} \left(\frac{4(\sqrt{1 - x} - 1)}{x} + 1 \right)$$

$$= \lim_{x \to 0^{-}} \left(\frac{4(\sqrt{1 - x} - 1)(\sqrt{1 - x} + 1)}{x(\sqrt{1 - x} + 1)} + 1 \right)$$

$$= \lim_{x \to 0^{-}} \frac{-4}{(\sqrt{1 - x} + 1)} + 1 = -1$$

Par suite f est dérivable à gauche en D; $f_g'(D) = -1$ et C_f admet une demitangente de coefficient directeur -1 à gauche du point d'abscisse D

ZONE PUBLICITAIRE

EXERCICE 3

Calculer f'(x) pour tout x de I dans chacun des cas suivants:

1)
$$f(x) = (x^2 - 5x + 1)\sqrt{x}$$

$$\mathcal{I} =]0,+\infty[$$

2)
$$f(x) = (x^2 + x + 1)^{\frac{3}{4}}$$

3)
$$f(x) = \frac{\sqrt{x} + 1}{\sqrt{x} - 1}$$

;
$$\mathcal{I} =]1, +\infty[$$

4)
$$f(x) = \sqrt{x^2 + 4x - 5}$$

$$\mathcal{I} =]1, +\infty[$$

$$5) f(x) = \sqrt[3]{x^3 + 3x^2 - 1}$$

6)
$$f(x) = \sqrt[4]{x^4 + x^2 + 3}$$

$$; I = IR$$

7)
$$f(x) = \sin^3(x^2 - x)$$

8)
$$f(x) = \frac{x}{x-1}(x^2+3)^{\frac{1}{3}}$$

$$\mathcal{T} =]1, +\infty[$$

Correction

1)
$$f(x) = (x^2 - 5x + 1)\sqrt{x}$$
 ; $\mathcal{I} = [0, +\infty[$

;
$$\mathcal{I} =]D, +\infty[$$

f(x) est dérivable sur $I = [0, +\infty[$ comme produit de deux fonctions dérivables sur

$$\mathcal{I} =]0, +\infty[\ est \ de \ la \ forme \ u \times v \ où \ u(x) = (x^2 - 5x + 1) \Rightarrow u'(x) = 2x - 5 \ et$$

$$V(x) = \sqrt{x} \Rightarrow V'(x) = \frac{1}{2\sqrt{x}}$$

Donc $f'(x) = u' \times \vee + u \times \vee'$

$$= (2x - 5) \times \sqrt{x} + (x^2 - 5x + 1) \times \frac{1}{2\sqrt{x}}$$

$$=\frac{2\sqrt{x}\times(2x-5)\times\sqrt{x}+(x^2-5x+1)}{2\sqrt{x}}$$

$$= \frac{2(2x-5)\times x + (x^2 - 5x + 1)}{2\sqrt{x}}$$

$$=\frac{4x^2-10x+x^2-5x+1}{2\sqrt{x}}$$

$$=\frac{5x^2-15x+1}{2\sqrt{x}}$$

$$\mathcal{D}'o\grave{u}:f'(x)==\frac{5x^2-15x+1}{2\sqrt{x}}\;;pour\;tout\;x\in\left]0,+\infty\right[$$

2)
$$f(x) = (x^2 + x + 1)^{\frac{3}{4}}$$

f est définie sur IR car c'est le composé de la fonction $x \mapsto (x^2 + x + 1)^3$ et la fonction $x \mapsto \sqrt[4]{x}$ où $x = x^2 + x + 1 > 0$; $\forall x \in IR$; et elle est dérivable sur $I =]0, +\infty[$ comme composée de deux fonctions dérivables sur $I =]0, +\infty[$.

On a : d'après la formule de la dérivée d'une fonction composée $\forall x \in]0,+\infty[$:

$$f'(x) = \frac{3}{4}(x^2 + x + 1)'(x^2 + x + 1)^{\frac{3}{4} - 1}$$

$$= \frac{3}{4}(2x + 1)(x^2 + x + 1)^{-\frac{1}{4}}$$

$$= \frac{3}{4} \times \frac{2x + 1}{\sqrt[4]{x^2 + x + 1}}$$

$$Vonc(\forall x \in]0,+\infty[); f'(x) = \frac{3}{4} \times \frac{2x+1}{\sqrt[4]{x^2+x+1}}$$

3)
$$f(x) = \frac{\sqrt{x} + 1}{\sqrt{x} - 1}$$
 ; $\mathcal{I} =]1, +\infty[$

Les fonctions $x \mapsto \sqrt{x} + 1$ et $x \mapsto \sqrt{x} - 1$ sont continues et dérivables sur $I =]1, +\infty[$; de plus $x \mapsto \sqrt{x} - 1$ ne s'annule pas sur $I =]1, +\infty[$; donc f est dérivable sur $I =]1, +\infty[$ comme quotient de deux fonctions dérivables et on a pour tout $x \in]1, +\infty[$:

$$f'(x) = \left(\frac{\sqrt{x}+1}{\sqrt{x}-1}\right)'$$

$$= \frac{\left(\sqrt{x}+1\right)'\left(\sqrt{x}-1\right)-\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)'}{\left(\sqrt{x}-1\right)^2}$$

$$= \frac{\frac{1}{2\sqrt{x}}\left(\sqrt{x}-1\right)-\left(\sqrt{x}+1\right)\frac{1}{2\sqrt{x}}\right'}{\left(\sqrt{x}-1\right)^2}$$

$$= \frac{\frac{1}{2\sqrt{x}}\left(\sqrt{x}-1-\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)^2}$$

$$= \frac{\frac{-1}{\sqrt{x}}\left(\sqrt{x}-1\right)^2}{\sqrt{x}\left(\sqrt{x}-1\right)^2}$$

$$= \frac{-1}{\sqrt{x}\left(\sqrt{x}-1\right)^2}$$

$$\operatorname{Donc}\left(\forall x \in \left]1, +\infty\right[\right); f'(x) = \frac{-1}{\sqrt{x}\left(\sqrt{x} - 1\right)^{2}}$$

4)
$$f(x) = \sqrt{x^2 + 4x - 5}$$
 ; $I =]1, +\infty[$

On a $x^2 + 4x - 5 > 0$ pour tout $x \in]1, +\infty[$ (en étudiant le signe de $x^2 + 4x - 5$)

Donc f est définie dérivable sur $I =]1, +\infty[$ comme composée de deux fonctions dérivables

$$sur \ \mathcal{I} = \left]1, +\infty \left[(x \mapsto x^2 + 4x - 5 \ et X \mapsto \sqrt{X}) \ et \ on \ a \ pour \ tout \ x \in \left]1, +\infty \right[\ : \ et X \mapsto \sqrt{X} \right] \right]$$

$$f'(x) = \left(\sqrt{x^2 + 4x - 5}\right)'$$

$$= \frac{\left(x^2 + 4x - 5\right)'}{2\sqrt{x^2 + 4x - 5}}$$

$$= \frac{2x + 4}{2\sqrt{x^2 + 4x - 5}}$$

$$= \frac{x + 2}{\sqrt{x^2 + 4x - 5}}$$

$$\operatorname{Donc}\left(\forall x \in]1, +\infty[\right); f'(x) = \frac{x+2}{\sqrt{x^2+4x-5}}$$

5)
$$f(x) = \sqrt[3]{x^3 + 3x^2 - 1}$$
 ; $I =]1, +\infty[$

On a $x^3+3x^2-1>0$ pour tout $x\in]1,+\infty[$ (en mettant x^3+3x^2-1 sous la forme :

$$x^{3} + 3x^{2} - 1 = x^{3} - 1 + 3x^{2}$$
$$= (x - 1)(x^{2} + 3x + 1) + 3x^{2}$$

ZONE PUBLICITAIRE

Donc f est définie dérivable sur $I =]1, +\infty[$ comme composée de deux fonctions dérivables sur $I =]1, +\infty[$ $(x \mapsto x^3 + 3x^2 - 1et X \mapsto \sqrt[3]{X})$ et on a pour tout $x \in]1, +\infty[$:

$$f'(x) = \left(\sqrt[3]{x^3 + 3x^2 - 1}\right)'$$

$$= \left(\left(x^3 + 3x^2 - 1\right)^{\frac{1}{3}}\right)'$$

$$= \frac{1}{3} \times \left(x^3 + 3x^2 - 1\right)' \times \left(x^3 + 3x^2 - 1\right)^{\frac{1}{3} - 1}$$

$$= \frac{1}{3} \times \left(3x^2 + 6x\right) \times \left(x^3 + 3x^2 - 1\right)^{-\frac{2}{3}}$$

$$= \frac{x^2 + 2x}{\sqrt[3]{\left(x^3 + 3x^2 - 1\right)^2}}$$

$$\text{Ponc}\left(\forall x \in]1, +\infty[\right); f'(x) = \frac{x^2 + 2x}{\sqrt[3]{\left(x^3 + 3x^2 - 1\right)^2}}$$

6)
$$f(x) = \sqrt[4]{x^4 + x^2 + 3}$$
; $I = IR$

f est définie sur IR car c'est le composé de la fonction $x \mapsto x^4 + x^2 + 3$ et la fonction $x \mapsto \sqrt[4]{x}$ où $x = x^4 + x^2 + 3 > 0$; $\forall x \in IR$; et elle est dérivable sur IR comme composée de deux fonctions dérivables sur IR; et on a pour tout $x \in IR$:

$$f'(x) = \left(\sqrt[4]{x^4 + x^2 + 3}\right)'$$

$$= \left(\left(x^4 + x^2 + 3\right)^{\frac{1}{4}}\right)'$$

$$= \frac{1}{4} \times \left(x^4 + x^2 + 3\right)' \times \left(x^4 + x^2 + 3\right)^{\frac{1}{4} - 1}$$

$$= \frac{1}{4} \times \left(4x^3 + 2x\right) \times \left(x^4 + x^2 + 3\right)^{-\frac{3}{4}}$$

$$= \frac{2x^3 + x}{2\sqrt[4]{\left(x^4 + x^2 + 3\right)^3}}$$

Donc
$$(\forall x \in IR)$$
; $f'(x) = \frac{2x^3 + x}{2\sqrt[4]{(x^4 + x^2 + 3)^3}}$

7)
$$f(x) = \sin^3(x^2 - x)$$
 ; $I = IR$

f est définie sur IR car c'est le composé de la fonction $x \mapsto x^2 - x$ et la fonction $x \mapsto \sin^3 x$; et elle est dérivable sur IR comme composée de deux fonctions dérivables sur IR; et on a pour tout $x \in IR$:

$$f'(x) = \left(\sin^{3}(x^{2} - x)\right)'$$

$$= 3\left(\sin(x^{2} - x)\right)'\left(\sin^{3-1}(x^{2} - x)\right)$$

$$= 3(x^{2} - x)' \times \cos(x^{2} - x)\left(\sin^{2}(x^{2} - x)\right)$$

$$= 3(2x - 1) \times \cos(x^{2} - x)\sin^{2}(x^{2} - x)$$

$$= \frac{3(2x - 1)\sin^{2}\left(2\left(x^{2} - x\right)\right)}{4}$$

$$Donc\left(\forall x \in \mathbb{TR}\right); f'(x) = \frac{3(2x - 1)\sin^{2}\left(2\left(x^{2} - x\right)\right)}{4}$$

$$8) f(x) = \frac{x}{x - 1}(x^{2} + 3)^{\frac{1}{3}}; \mathcal{I} =]1, +\infty[$$

 $f \text{ est dérivable sur } I =]1, +\infty[\text{ comme produit de deux fonctions dérivables } (x \mapsto \frac{x}{x-1} \text{ car} \\ x-1 \text{ ne s'annule pas sur } I =]1, +\infty[\text{ etx } \mapsto (x^2+3)^{\frac{1}{3}} \text{ car } x^2+3 > 0 \text{ sur } I =]1, +\infty[)$ $et \text{ on a pour tout } x \in]1, +\infty[: f'(x) = \left(\frac{x}{x-1}(x^2+3)^{\frac{1}{3}}\right)'$ $= \left(\frac{x}{x-1}\right)'(x^2+3)^{\frac{1}{3}} + \left(\frac{x}{x-1}\right)\left((x^2+3)^{\frac{1}{3}}\right)'$ $= \frac{(x-1)-x}{(x-1)^2}(x^2+3)^{\frac{1}{3}} + \frac{1}{3}\left(\frac{x}{x-1}\right)(x^2+3)'(x^2+3)^{\frac{1}{3}-1}$ $= \frac{-\sqrt[3]{x^2+3}}{(x-1)^2} + \frac{1}{3\sqrt[3]{(x^2+3)^2}}\left(\frac{2x^2}{x-1}\right)$ $= \frac{-3\sqrt[3]{x^2+3}\sqrt[3]{(x^2+3)^2} + 2x^2(x-1)}{(x^2+3)^2}$

 $3\sqrt[3]{(x^2+3)^2}(x-1)^2$

$$= \frac{-3(x^2+3)+2x^3-2x^2}{3\sqrt[3]{(x^2+3)^2}(x-1)^2}$$

$$= \frac{2x^3-5x^2-9}{3\sqrt[3]{(x^2+3)^2}(x-1)^2}$$

$$= \frac{2x^3-5x^2-9}{3\sqrt[3]{(x^2+3)^2}(x-1)^2}$$

$$= \frac{2x^3-5x^2-9}{3\sqrt[3]{(x^2+3)^2}(x-1)^2}$$

 $Donc\left(\forall x \in]1, +\infty[\right); f'(x) = \frac{2x^3 - 5x^2 - 9}{3\sqrt[3]{\left(x^2 + 3\right)^2} \left(x - 1\right)^2}$

EXERCICE 4

Soit f la fonction définie par :
$$\begin{cases} f(x) = x^2 \sin\left(\frac{1}{x}\right) &; \quad x \neq 0 \\ f(0) = 0 \end{cases}$$

1) Montrer que f est dérivable en $x_0 = 0$ et donner une interprétation géométrique.

2) Montrer que f'est dérivable sur IR, et calculer f'(x) pour tout $x \in IR$.

Correction

1) Calculons
$$\lim_{x\to 0} \frac{f(x)-f(0)}{x-0}$$

On a:
$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{x^2 \sin\left(\frac{1}{x}\right) - 0}{x}$$
$$= \lim_{x \to 0} x \sin\left(\frac{1}{x}\right)$$

Or pour tout
$$x \neq 0$$
; on $a:-1 \leq \sin\left(\frac{1}{x}\right) \leq 1 \Rightarrow -x \leq x \sin\left(\frac{1}{x}\right) \leq x$

D'où par encadrement on déduit que :
$$\lim_{x\to 0} x \sin\left(\frac{1}{x}\right) = 0$$

Par suite $\lim_{x\to 0} \frac{f(x)-f(0)}{x-0} = 0$; donc fest dérivable en x=0 et f'(0)=0; la courbe de fadmet une tangente horizontale au point d'abscisse O.

2) la fonction
$$x \mapsto x^2 \sin\left(\frac{1}{x}\right)$$
 est dérivable sur $]-\infty; 0[$ et sur $]0; +\infty[$; donc f est

dérivable sur] $-\infty$; $D[e+sur]D; +\infty[; de plus fes+ dérivable en <math>x=0;$ par suite fes+

dérivable sur IR ; et on a :
$$f'(x) = \left(x^2 \sin\left(\frac{1}{x}\right)\right)'$$

$$= 2x \sin\left(\frac{1}{x}\right) + x^2 \left(\sin\left(\frac{1}{x}\right)\right)^x$$

$$\mathcal{O}r\left(\sin\left(\frac{1}{x}\right)\right)' = \left(\frac{1}{x}\right)'\cos\left(\frac{1}{x}\right) = \frac{-1}{x^2} \times \cos\left(\frac{1}{x}\right)$$

$$\operatorname{Donc} f'(x) = 2x \sin\left(\frac{1}{x}\right) + x^2 \times \frac{-1}{x^2} \times \cos\left(\frac{1}{x}\right)$$
$$= 2x \sin\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right)$$

EXERCICE 5

Soit f la fonction définie par : $f(x) = x^3 - 3x^2 + 3x - 2$

- 1) Calculer f'(x) pour tout $x \in IR$.
- 2) Donner le tableau de variation de f.

Correction

1) Pour tout
$$x \in IR$$
; on $a : f'(x) = (x^3 - 3x^2 + 3x - 2)'$
= $3x^2 - 6x + 3$
= $3(x^2 - 2x + 1)$
= $3(x - 1)^2$

 $D'o\dot{a}: f'(x) \ge 0$ pour tout $x \in IR$.

2) Tableau de variation de f.

Χ	$-\infty$	$+\infty$
f'(x)	+	
f(x)		せ

EXERCICE 6

Soit f la fonction définie par : $f(x) = \sqrt[4]{x} + \sqrt[4]{10-x}$

- 1) Déterminer le domaine de définition de f.
- 2) Montrer que: $(\forall x \in]0;10[);f'(x) = \frac{\sqrt[4]{(10-x)^3} \sqrt[4]{x^3}}{4\sqrt[4]{(x(10-x))^3}}$
- 3) Déterminer le signe de f'(x) suivant les valeurs de x.
- 4) En déduire une comparaison des nombres $A = \sqrt[4]{2} + \sqrt[4]{8}$ et $B = \sqrt[4]{3} + \sqrt[4]{7}$.

ZONE PUBLICITAIRE

<u>Correction</u>

1)
$$D_f = \{x \in \mathbb{IR} \mid x \ge 0 \text{ et } 10 - x \ge 0\}$$

= $\{x \in \mathbb{IR} \mid x \ge 0 \text{ et } x \le 10\}$

$$=[0;10]$$

2) Pour tout
$$x \in]0;10[$$
; $f'(x) = \left(\sqrt[4]{x} + \sqrt[4]{10 - x}\right)'$

$$= \left(x^{\frac{1}{4}} + (10 - x)^{\frac{1}{4}}\right)'$$

$$= \frac{1}{4} \times x^{\frac{1}{4} - 1} + \frac{1}{4} \times (10 - x)' \times (10 - x)^{\frac{1}{4} - 1}$$

$$= \frac{1}{4} \times x^{-\frac{3}{4}} - \frac{1}{4} \times (10 - x)^{-\frac{3}{4}}$$

$$= \frac{1}{4\sqrt[4]{x^3}} - \frac{1}{4\sqrt[4]{(10 - x)^3}}$$

$$= \frac{\sqrt[4]{(10 - x)^3} - \sqrt[4]{x^3}}{4\sqrt[4]{x^3}\sqrt[4]{(10 - x)^3}}$$

$$= \frac{\sqrt[4]{(10 - x)^3} - \sqrt[4]{x^3}}{4\sqrt[4]{(10 - x)^3}}$$

$$= \frac{\sqrt[4]{(10 - x)^3} - \sqrt[4]{x^3}}{4\sqrt[4]{(10 - x)^3}}$$

$$Donc: (\forall x \in]0;10[); f'(x) = \frac{\sqrt[4]{(10-x)^3} - \sqrt[4]{x^3}}{4\sqrt[4]{(x(10-x))^3}}$$

3) Le signe de f'(x) est celui de $\sqrt[4]{(10-x)^3} - \sqrt[4]{x^3}$; on a:

 $D'où f'(x) \ge 0$; sur]0;5]

ZONE PUBLICITAIRE

 $D'où f'(x) \ge 0$; sur [5;10[

4) on $a:2\in]0;5]$ et $3\in]0;5]$; de plus f est croissante sur]0;5]; alors

 $2 \le 3 \Rightarrow f(2) \le f(3)$

$$\Rightarrow \sqrt[4]{2} + \sqrt[4]{10 - 2} \le \sqrt[4]{3} + \sqrt[4]{10 - 3}$$

$$\Rightarrow \sqrt[4]{2} + \sqrt[4]{8} \le \sqrt[4]{3} + \sqrt[4]{7}$$

Axe de symétrie – Centre de symétrie Point d'inflexion

O <u>Axe de symétrie</u>

La_droite d'équation y = a est un axe de symétrie de la courbe d'une fonction f si et seulement si :

$$\blacksquare \ \forall x \in \mathcal{D}_f$$
 alors $(2a - x) \in \mathcal{D}_f$

O Centre de symétrie

Le point I(a;b) est un centre de symétrie de la courbe d'une fonction f si et seulement si :

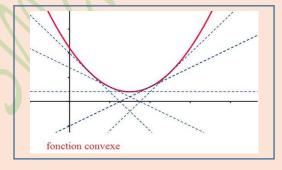
$$\blacksquare \ \forall x \in \mathcal{D}_f$$
 alors $(2a - x) \in \mathcal{D}_f$

O Convexité et concavité - point d'inflexion

Une courbe de fonction est convexe sur un intervalle I si elle est au-dessus de toutes ses tangentes sur cet intervalle

Sion
$$a:f''(x) \ge 0 \quad (\forall x \in I)$$

Alors la courbe de f est convexe sur I



Une courbe de fonction est concave sur un intervalle I si elle est au-dessous de toutes ses tangentes sur cet intervalle

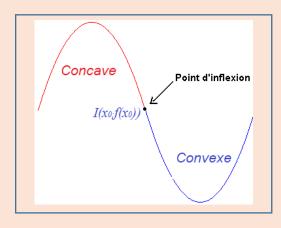
Si on
$$a: f''(x) \le 0$$
 $(\forall x \in I)$
Alors la courbe de f est concave sur I

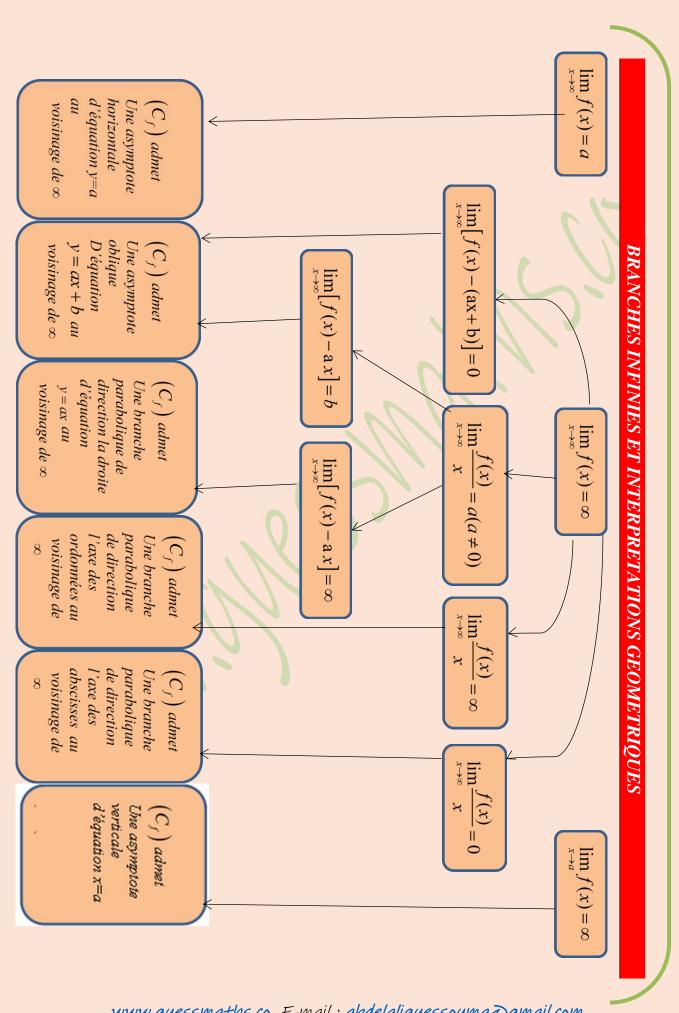
fonction concave

Un point $I(x_0; f(x_0))$ est un point d'inflexion si la courbe change de concavité en ce point

Si f'' s'annule au point x_0 en changeant de signe alors la courbe de f admet un point d'inflexion d'abscisse x_0 .

Si f's'annule au point x_0 sans changer de signe alors la courbe de f admet un point d'inflexion d'abscisse x_0 .





La fonction réciproque

■ Propriété

Si f est une fonction continue et strictement monotone sur un intervalle I Alors f admet une fonction réciproque définie sur l'intervalle J = f(I)Cette fonction est notée : $f^{-1}: x \mapsto f^{-1}(x)$

■ <u>Résultats</u>

$$\begin{array}{ll}
o & \begin{cases}
f(x) = y \\
x \in \mathcal{I}
\end{cases} \Leftrightarrow \begin{cases}
f^{-1}(y) = x \\
y \in \mathcal{J} = f(\mathcal{I})
\end{cases}$$

$$o \quad \forall x \in \mathcal{I} \qquad (f^{-1} \circ f)(x) = x$$

$$\forall y \in f(\mathcal{I}) \quad (f \circ f^{-1})(y) = y$$

■ Déterminer l'expression de la fonction inverse

Soit f une fonction continue et strictement monotone sur un intervalle I Soit x un élément de f(I)et y un élément de I

En utilisant l'équivalence : $f^{-1}(y) = x \Leftrightarrow f(x) = y$; en cherchons y en fonction de x ;on déduit l'expression de f^{-1} pour tout x de $f(\mathcal{I})$

■ Continuité de la fonction réciproque

Si f est une fonction continue et strictement monotone sur un intervalle I Alors la fonction réciproque f^{-1} est continue sur l'intervalle f(I)

■ Dérivée de la fonction réciproque

Soit f une fonction strictement monotone sur un intervalle I; donc elle admet une fonction réciproque définie sur l'intervalle $J=f\left(I\right)$; et on a :

$$(\forall x \in \mathcal{J})$$
; $f \circ f^{-1}(x) = x$

$$\mathcal{D}'\circ\lambda: (\forall x \in \mathcal{J}); (f^{-1})'(x) \times f'(f^{-1}(x)) = 1$$

Donc $\operatorname{si}(\forall x \in \mathcal{J}); f'(f^{-1}(x)) \neq 0$; alors f^{-1} est dérivable sur \mathcal{J} et $(\forall x \in \mathcal{J})$;

$$\left(\mathcal{F}^{-1}\right)'(x) = \frac{1}{\mathcal{F}'\left(\mathcal{F}^{-1}(x)\right)}$$

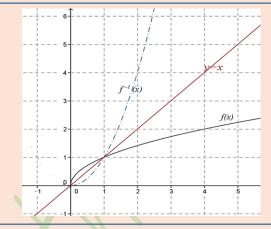
Et si en $x_0 \in \mathcal{J}$; $f'(f^{-1}(x)) \neq 0$; alors f^{-1} est dérivable en x_0 et $(f^{-1})'(x_0) = \frac{1}{f'(f^{-1}(x_0))}$

■ Dérivabilité de la fonction réciproque

Soit f une fonction continue et strictement monotone sur un intervalle I Alors la fonction réciproque f^{-1} a le même sens de variation sur f(I) que f

■ Représentation graphique de la fonction réciproque

Soit f une fonction continue et strictement monotone sur un intervalle I; les courbes de la fonction f et de sa réciproque f^{-1} dans un repère orthonormé sont symétriques par rapport à la 1ére bissectrice.



Exemple:

Soir f la fonction définie sur IR^+ par : $f(x) = x^2$

On sait que f admet une fonction réciproque f^{-1}

définie sur IR^+ par : $f^{-1}(x) = \sqrt{x}$

Et
$$f'(x) = 2x$$
 donc $f'(\sqrt{x}) = 2\sqrt{x}$

Alors $f'(\sqrt{x}) \neq 0$ pour tout $x \in IR^{*+}$

Par suite f^{-1} est dérivable sur IR^{*+} et on a : $(\forall x \in IR^{*+})$; $(f^{-1})'(x) = \frac{1}{2\sqrt{x}}$

Et on retrouve la formule de dérivation pour tout $x \in IR^{*+}: \left(\sqrt{x}\right)' = \frac{1}{2\sqrt{x}}$

ZONE PUBLICITAIRE

Fonction racine niéme n∈ IN

■ Propriétés et définition

La fonction : $x\mapsto x''$ définie sur IR^+ admet une fonction réciproque qu'on appelle fonction racine nième ; on la note : $\sqrt[n]{x}$

$$\sqrt[n]{x}: \qquad IR^+ \to IR^+ x \mapsto \sqrt[n]{x}$$

$$\forall (x; y) \in \mathcal{IR}^2$$
 $\sqrt[n]{x} = y \Leftrightarrow x = y^n$

■ Cas particuliers

$$\sqrt{\chi} = \sqrt[2]{\chi}$$

• le nombre $\sqrt[3]{x}$ s'appelle la racine cubique de x.

■ Propriétés

$$\forall (x; y) \in IR^{2}_{+} \qquad \forall n \in IN^{*}$$

$$\sqrt[n]{x^{n}} = x$$

$$(\sqrt[n]{x})^{n} = x$$

$$\sqrt[n]{x} = \sqrt[n]{y} \iff x = y$$

$$\sqrt[n]{x} > \sqrt[n]{y} \iff x > y$$

$$\forall (x; y) \in \mathcal{IR}_{+}^{2} \qquad \forall (n; m) \in (\mathcal{IN}^{*})^{2}$$

$$\sqrt[n]{x} \times \sqrt[n]{y} = \sqrt[n]{x} \times y$$

$$(\sqrt[n]{x})^{m} = \sqrt[n]{x}$$

■ Egalités importantes

$$\sqrt{\sqrt[3]{x} - \sqrt[3]{y}} = \frac{x - y}{\sqrt[3]{x^2} + \sqrt[3]{x}\sqrt[3]{y} + \sqrt[3]{y^2}} \quad \sqrt{x} - \sqrt{y} = \frac{x - y}{\sqrt{x} + \sqrt{y}}$$

ZONE PUBLICITAIRE

■ Domaine de définition

f définie comme suit	Domaine de définition de f
$f(x) = \sqrt[n]{x}$	$\mathcal{D}_{f} = [D; +\infty[$
$f(x) = \sqrt[n]{a(x)}$	$\mathcal{D}_f = \left\{ x \in IR \mid x \in \mathcal{D}_u \ \ et \ \ u(x) \ge 0 \right\}$

■ Les limites

$\lim_{x \to x_0} u(x)$	$\lim_{x \to x_0} \sqrt[n]{a(x)}$
$l \ge 0$	<i>√</i> //
+∞	+∞

Ces limites restent valables en x_0 à droite ou à gauche et en $\pm \infty$

■ Continuité

La fonction
$$x \mapsto \sqrt[n]{x}$$
 est continue sur \mathbb{IR}^+

Soit u une fonction définie sur l'intervalle I

Si u est positive et continue sur l'intervalle I Alors la fonction $x \mapsto \sqrt[n]{u(x)}$ Est continue sur l'intervalle I,

■ Dérivabilité

La fonction $x \mapsto \sqrt[n]{x}$ est dérivable sur l'intervalle $]0;+\infty[$ et on a :

$$\forall x \in]0; +\infty[\qquad \left(\sqrt[n]{x}\right)' = \frac{1}{n\sqrt[n]{x^{n-1}}}$$

Soit u une fonction définie sur l'intervalle I

Si u est positive et dérivable sur l'intervalle I Alors la fonction $x \mapsto \sqrt[n]{u(x)}$ est dérivable sur l'intervalle I.

et on
$$a: \forall x \in]0; +\infty[$$
 $\left(\sqrt[n]{u(x)}\right)' = \frac{\left(u(x)\right)'}{n\sqrt[n]{\left(u(x)\right)^{n-1}}}$

■ Résolution de l'équation $x^n = a$ $(x \in IR)$ et $(a \in IR)$

n est impair	n est pair

a > 0	$S = \{\sqrt[n]{a}\}$	$S = \left\{ -\sqrt[n]{a}; \sqrt[n]{a} \right\}$
a = 0	$S = \{D\}$	S = {D}
a < 0	$S = \left\{ -\sqrt[n]{ \mathcal{A} } \right\}$	$S = \emptyset$

■ Puissance rationnelles d'un réel positif

Soit $r = \frac{P}{q}$ un nombre rationnel non nul tel que : $P \in \mathbb{Z}$ et $q \in \mathbb{N}^*$

$$\forall x \in \left]0; +\infty\right[x^r = x^{\frac{P}{q}} = \sqrt[q]{x^P}$$

■ Remarques importantes

•
$$\forall x \in]D; +\infty[$$
 $\sqrt[n]{x} = x^{\frac{1}{n}}$

• Le domaine de définition de la fonction : $x \mapsto (a(x))^r \quad (r \in \mathbb{Q}^*)$ est :

$$\mathcal{D} = \left\{ x \in \mathcal{IR} \mid x \in \mathcal{D}_u \text{ et } u(x) \ge 0 \right\}$$

•
$$\left(\sqrt[n]{u(x)}\right)' = u \times (u(x))' \times (u(x))^{\frac{1}{n}-1}$$

Pour tous x et y de IR_{+}^{*} et r ; r' de $arrho^{*}$

•
$$(x^r)^{r'} = x^{r \times r'}$$
 • $x^r \times x^{r'} = x^{r+r'}$ • $(x \times y)^r = x^r \times y^r$

$$(x \times y)^r = x^r \times y^r$$

$$\bullet \left(\frac{x}{y}\right)^r = \frac{x^r}{y^r} \qquad \bullet \frac{x^r}{x^{r'}} = x^{r-r'} \qquad \bullet \frac{1}{x^{r'}} = x^{-r'}$$

$$\bullet \frac{\chi^r}{\chi^{r'}} = \chi^{r-r}$$

$$\bullet \frac{1}{x^{r'}} = x^{-r}$$

4. comment interpréter graphiquement une limite

Méthode

On l'interprète en termes d'asymptote

 \blacksquare Si $\lim f(x) = \pm \infty$ ou $a \in \mathbb{TR}$, alors on conclut que : C_F admet une

asymptote verticale d'équation x = a

Si $\lim_{x\to\pm\infty} f(x) = b$, ou $b\in \mathbb{T}R$, alors on conclut que : C_f admet une

asymptote horizontale d'équation y = b au voisinage de ∓∞.

asymptote oblique d'équation y = ax + b au Voisinage de $\mp \infty$.

Exemple

Calculer les limites suivantes et donnez-en une interprétation graphique:

a)
$$\lim_{x \to -2^{-}} \frac{x + 5 - x^2}{2 + x}$$

b)
$$\lim_{x \to -\infty} \frac{-4x^2 + 5}{-1 + 5x - x^2}$$

c)
$$\lim_{x \to +\infty} f(x) + (4x+1)$$
 où $f(x) = -\frac{4x^2 + 9x + 5}{x+2}$.

Solution

a) Pour
$$\lim_{x \to -2^{-}} \frac{x + 5 - x^2}{2 + x}$$

On a
$$\lim_{x \to -2^{-}} x + 5 - x^2 = -1$$
 (car le polynôme $x + 5 - x^2$ est continue en -2).

Et
$$\lim_{x \to -2^{-}} 2 + x = 0^{-} (carx < -2).$$

Donc en appliquant les règles de quotient des limites ; on obtient : $\lim_{x\to -2^-} \frac{x+5-x^2}{2+x} = +\infty$

Interprétation géométrique:

 C_f admet $-\infty$ la droite d'équation x = -2 comme asymptote verticale.

b) Pour
$$\lim_{x \to -\infty} \frac{-4x^2 + 5}{-1 + 5x - x^2}$$

En utilise la règle du plus haut degré ; on obtient : $\lim_{x\to\infty} \frac{-4x^2+5}{-1+5x-x^2} = \lim_{x\to\infty} \frac{-4x^2}{-x^2} = 4$

Interprétation géométrique:

 C_{+} admet au voisinage de $-\infty$ la droite d'équation y=4 comme asymptote horizontale.

c)
$$\lim_{x \to +\infty} f(x) + (4x + 1)$$
 où $f(x) = -\frac{4x^2 + 9x + 5}{x + 2}$

pour calculer cette limite il suffit de trouver une expression simplifier de

$$\lim_{x \to +\infty} f(x) + (4x+1) = \lim_{x \to +\infty} -\frac{4x^2 + 9x + 5}{x + 2} + (4x+1)$$

On peut d'abord montrer que : $f(x) = -\frac{4x^2 + 9x + 5}{x + 2} = -(4x + 1) - \frac{3}{x + 2}$ par une division euclidienne de $4x^2 + 9x + 5$ par x + 2; on obtient :

$$f(x) + (4x+1) = -\frac{4x^2 + 9x + 5}{x+2} = (4x+1) - (4x+1) - \frac{3}{x+2} = -\frac{3}{x+2} \text{ et } \lim_{x \to +\infty} -\frac{3}{x+2} = 0$$

$$\text{Donc: } \lim_{x \to +\infty} f(x) + (4x+1) = 0.$$

Interprétation géométrique:

 C_f admet une asymptote oblique d'équation y = -(4x + 1) au Voisinage de $+\infty$.

5. <u>Comment montrer que la courbe représentative d'une fonction f admet une asymptote verticale</u>

<u>Méthode</u>

On choisit une valeur interdite $a \in IR$ de f (càd une valeur où f n'est pas définie) et on calcule $\lim_{x \to a} f(x)$ pour trouver $+\infty$ ou $-\infty$.

Dans la plus part des cas cette limite se calculera à droite et à gauche de a. On conclut que la droite d'equation x=a est une asymptote verticale à C_f .

Exemple

Soit la fonction f definie sur $]-\infty;4[\,\cup\,]4;+\infty[\,\,par:f(x)=\frac{x^2+x-6}{4-x}]$

Montrer que f admet une une asymptote verticale dont on précisera une éequation.

Solution

Comme 4 annule le denominateur de f(x), on n'hésite pas : on calcule lim f(x) On a : $\lim_{x \to 4} x^2 + x - 6 = 14$ et $\lim_{x \to 4} 4 - x = 0$. Donc $\lim_{x \to 4} f(x) = \pm \infty$ (celon si cette limite est à droite ou à gauche de 4.

Interprétation géométrique:

Des deux deniers résultats, on déduit que la droite d'equation x = 4 est asymptote verticale à la courbe représentative de la fonction f.

ZONE PUBLICITAIRE

6. <u>Comment montrer que la courbe représentative d'une fonction f admet une asymptote horizontale</u>

<u>Méthode</u>

On calcule $\lim_{x \to -\infty} f(x)$ ou $\lim_{x \to +\infty} f(x)$ pour trouver un réel b.

On conclut alors que la droite équation y=b est une asymptote horizontale à C_f au Voisinage de $-\infty$ ou au Voisinage de $+\infty$.

Exemple

Soit
$$f: x \mapsto \frac{2+x-x^2}{3x^2+7}$$
 définie sur IR.

Montrer que C_f la courbe représentative de f, admet en $-\infty$ une asymptote dont on précisera une équation.

Solution

En utilise la règle du plus haut degré ; on obtient :

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{2 + x - x^2}{3x^2 + 7} = \lim_{x \to -\infty} \frac{-x^2}{3x^2} = -\frac{1}{3}$$

On peut donc conclure que C_f admet une asymptote verticale en $-\infty$ d'équation $y=-\frac{1}{3}$

7. <u>Comment montrer que la courbe représentative d'une fonction f admet une</u> <u>asymptote oblique</u>

<u>Méthode 2</u> (on nous demande d'étudier les branches infinies de la courbe de f aux voisinage de $\pm\infty$)

On trouve $\lim_{x \to +\infty} f(x) = \infty$.

On calcule $\lim_{x\to\pm\infty}\frac{f(x)}{x}$; on a trois cas possibles:

- $\lim_{x\to\pm\infty}\frac{f(x)}{x}=0$; alors (C_{f}) admet une branche parabolique de direction l'axe des abscisses aux voisinage de $\pm\infty$)
- $\lim_{x\to\pm\infty}\frac{f(x)}{x}=\pm\infty$; alors $(C_{\!\!\!\!/})$ admet une branche parabolique de direction l'axe des ordonnées aux Voisinage de $\pm\infty$)
- $\lim_{x \to \pm \infty} \frac{f(x)}{x} = a \neq 0$; alors on calcule $\lim_{x \to \pm \infty} f(x) ax$; on a deux cas possibles:
 - $\sim \lim_{x \to \pm \infty} f(x) ax = \pm \infty$; alors (C_{φ}) admet une branche parabolique de direction la droite d'équation y = ax aux voisinage de $\pm \infty$)
 - $\sim \lim_{x \to \pm \infty} f(x) ax = b \in \mathbb{R}$; alors (C_{φ}) admet une asymptote oblique d'équation y = ax + b aux voisinage de $\pm \infty$.

<u>Méthode 2</u> (on nous donne une droite et on nous demande de montrer que cette droite est une asymptote à la courbe de f aux voisinage de $\pm \infty$)

On trouve $\lim_{x\to\pm\infty} f(x) = \infty$.

On montre que $\lim_{x \to -\infty} f(x) - y = 0$ ou $\lim_{x \to +\infty} f(x) - y = 0$ avec y = ax + b

On conclut alors que la droite d'équation y=ax+b est asymptote oblique à C_F au Voisinage de $+\infty$ ou au Voisinage de $-\infty$.

Exemple

- a) Déterminer les réels a; b et c tels que $f(x) = ax + b + \frac{c}{x-1}$.
- b) En déduire que la courbe représentative $C_{\!\scriptscriptstyle F}$ de f admet une asymptote oblique dont on précisera une équation.

Solution

a) Pour tout
$$x \ne 1$$
, on $a : ax + b + \frac{c}{x - 1} = \frac{ax(x - 1) + b(x - 1) + c}{x - 1}$

$$= \frac{ax^2 + (b - a)x + (c - b)}{x - 1}$$
En identifiant les deux expressions on obtient : $\begin{cases} a = 2 \\ b - a = -6 \end{cases} \Rightarrow \begin{cases} b = -4 \\ c - b = 5 \end{cases}$

En identifiant les deux expressions on obtient :
$$\begin{cases} a = 2 \\ b - a = -6 \Rightarrow \begin{cases} a = 2 \\ c - b = 5 \end{cases}$$
 $c = 1$

Donc
$$f(x) = 2x - 4 + \frac{1}{x - 1}$$
; $d'où$: $f(x) - (2x - 4) = \frac{1}{x - 1}$

Et comme
$$\lim_{x\to\pm\infty}\frac{1}{x-1}=0$$
; alors $\lim_{x\to\pm\infty}f(x)-(2x-4)=0$

On conclut que C_f admet la droite(Δ) d'équation y=2x-4 comme asymptote oblique au voisinage de ±∞ .

8. <u>Comment étudier sur l'intervalle I la position relative de Cf et d'une droite D qui lui</u> est asymptote

Méthode

On calcule f(x) - y; où y = ax + b est une équation de la droite D.

On étudie ensuite le signe de f(x)-y sur Intervalle I (à l'aide d'un tableau de signe)

On conclut que C_f est au-dessus de D sur Intervalle I si $f(x) - y \ge 0$ et que (C_{+}) est au-dessous de D sur l'intervalle I si $f(x) - y \leq 0$

Exemple

Dans l'exemple précèdent, étudier les positions relatives de $(C_{\!\scriptscriptstyle F})$ et de la droite D. d'éguation y = 2x - 4

Solution

On a montré que pour $x \ne 1$, $f(x) - (2x - 4) = \frac{1}{x - 1}$ Etudions le signe de f(x) - y avec $x \ne 1$: f(x) - y est du signe de x - 1Or x - 1 > 0 pour x > 1 et x - 1 < 0 pour x < 1On peut donc dire que :

 $sur]1; +\infty[; f(x)-y>0$

Ce qui signifie que sur l'intervalle]1; $+\infty[$; $(C_{\!\scriptscriptstyle{\mathcal{F}}})$ est au-dessus de D.

Et sur $]-\infty;1[; f(x)-y<0$

Ce qui signifie que sur l'intervalle] $-\infty$;1[; $(C_{\!\scriptscriptstyle F})$ est au-dessous de D.

ZONE PUBLICITAIRE

Série d'exercices corrigés étude de fonction

www.guessmaths.co <u>E-mail</u>: abdelaliguessouma@gmail.com

whatsapp: 0604488896

Exercice 1

Soit f la fonction numérique définie sur IR par : $f(x) = x^3 + x^2 + x - 3$

- 1. a) Etudier la monotonie de la fonction f
 - b) Résoudre dans IR l'équation f(x) = 0 (Remarquez que 1 est une solution évidente)

- 2- Soit g la fonction numérique définie sur]- ∞ ; 1] par : $g(x) = \sqrt{1-x}$
 - a) Etudier la monotonie de g sur $]-\infty;1]$
 - b) Résoudre l'équation f(x) = g(x).
- 3- Soit h la fonction numérique définie par : $h(x) = f \circ g(x)$
 - a) définir \mathcal{D}_h l'ensemble de définition de h puis expliciter h(x)
 - b) Dresser le tableau des variations de h

Correction Exercice 1

1. a) pour tout
$$x \in IR$$
; on a: $f'(x) = 3x^2 + 2x + 1$
= $2x^2 + x^2 + 2x + 1$
= $2x^2 + (x + 1)^2$

Et comme $(\forall x \in IR)$; $2x^2 \ge e + (x+1)^2 > 0$

Alors $(\forall x \in IR)$; f'(x) > 0; la fonction f est strictement croissante sur IR.

b) Résolvons dans IR l'équation f(x) = 0; on peut remarquez que 1 est une solution évidente; donc le polynôme $x^3 + x^2 + x - 3$ est divisible par (x - 1)

En effectuant une division euclidienne de $x^3 + x^2 + x - 3$ par (x - 1); on obtient

$$x^{3} + x^{2} + x - 3 = (x - 1)(x^{2} + 2x + 3)$$

$$= (x - 1)(x^{2} + 2x + 1 + 2)$$

$$= (x - 1)((x + 1)^{2} + 2)$$

Donc
$$f(x) = 0 \Leftrightarrow (x-1)((x+1)^2 + 2) = 0$$

 $\Leftrightarrow x-1=0 \quad \text{ou} \quad (x+1)^2 + 2 = 0$
 $\Leftrightarrow x = 1 \quad \text{ou} \quad (x+1)^2 + 2 = 0$

Comme $(x+1)^2 + 2 > 0$; pour tout $x \in IR$; alors $f(x) = 0 \Leftrightarrow x = 1$

D'où l'équation f(x) = 0 admet une unique solution $x_0 = 1$

2éme méthode

On peut remarquer que:
$$x^3 + x^2 + x - 3 = x^3 - 1 + x^2 - 1 + x - 1$$

= $(x - 1)(x^2 + x + 1) + (x - 1)(x + 1) + (x - 1)$
= $(x - 1)(x^2 + x + 1 + x + 1 + 1)$

$$= (x-1)(x^2 + 2x + 1 + 2)$$
$$= (x-1)((x+1)^2 + 2)$$

$$2-g(x) = \sqrt{1-x} ; pour tout x \in]-\infty;1]$$

a) Soit
$$x \in]-\infty;1]$$
; on $a : g'(x) = (\sqrt{1-x})'$

$$= \frac{(1-x)'}{2\sqrt{1-x}}$$

$$= \frac{-1}{2\sqrt{1-x}}$$

 $\mathcal{D}'o\dot{u} \ (\forall x \in]-\infty;1]); g'(x) < 0$

Donc g est une fonction strictement décroissante sur $]-\infty;1]$.

b) Pour tout
$$x \in]-\infty;1]$$
; on $a: f(x) = g(x) \Leftrightarrow x^3 + x^2 + x - 3 = \sqrt{1-x}$
 $\Leftrightarrow -(1-x)((x+1)^2 + 2) = \sqrt{1-x}$
 $\Leftrightarrow -(\sqrt{1-x})^2((x+1)^2 + 2) - \sqrt{1-x} = 0$
 $\Leftrightarrow -\sqrt{1-x}((\sqrt{1-x})((x+1)^2 + 2) + 1) = 0$

Donc $x_0 = 1$ est solution de l'équation f(x) = g(x)

Alors si
$$x \neq 1$$
; on $a: f(x) = g(x) \Leftrightarrow (\sqrt{1-x})((x+1)^2 + 2) + 1 = 0$

Et comme
$$(\sqrt{1-x})((x+1)^2+2)+1>0$$

Donc la seule solution de l'équation f(x) = g(x) est $x_0 = 1$.

3- Soit h la fonction numérique définie par : $h(x) = f \circ g(x)$

a)
$$\mathcal{D}_h = \left\{ x \in \mathcal{D}_g \mid g(x) \in \mathcal{D}_f \right\}$$

= $\left\{ x \in \left] - \infty; 1 \right] \mid g(x) \in IR \right\}$
= $\left[- \infty; 1 \right]$

b) On sait que f est strictement croissante sur IR et que g est une fonction strictement décroissante sur $]-\infty;1]$; donc par propriété de la monotonie d'une fonction composée on déduit que h est strictement décroissante sur $]-\infty;1]$; d'où le tableau de variation de h:

,	
Χ	-∞ 1
h'(x)	
h(x)	

Exercice 2

Soit f la fonction numérique définie par : $f(x) = (\sqrt{x+1} - 1)^3$

- 1. Déterminer D_{ε}
- 2. Etudier la dérivabilité de f à droite en -1
- 3. Etudier la monotonie de f sur \mathcal{D}_f
- 4. Soit g la restriction de f sur l'intervalle $[0; +\infty[$
 - a) Montrer que g admet une fonction réciproque g^{-1} définie sur un intervalle J à déterminer

b) Déterminer $g^{-1}(x)$ pour tout $x \in \mathcal{J}$

ZONE PUBLICITAIRE

Correction Exercice 2

$$f(x) = \left(\sqrt{x+1} - 1\right)^3$$

1.
$$\mathcal{D}_f = \left\{ x \in \mathcal{IR} / x + 1 \ge 0 \right\}$$
$$= \left\{ x \in \mathcal{IR} / x \ge -1 \right\}$$

Donc
$$\mathcal{D}_f = [-1; +\infty]$$

2. Etudions la dérivabilité de f à droite en -1

Calculons
$$\lim_{x \to -1^+} \frac{f(x) - f(-1)}{x + 1}$$

$$f(-1) = (\sqrt{-1+1} - 1)^3 = -1$$

Donc pour
$$x \neq -1$$
; on a:
$$\frac{f(x) - f(-1)}{x+1} = \frac{\left(\sqrt{x+1} - 1\right)^3 + 1}{x+1}$$
$$= \frac{\left(\sqrt{x+1} - 1 + 1\right)\left(x + 1 - \sqrt{x+1} + 1\right)}{x+1}$$

$$= \frac{\sqrt{x+1}(x-\sqrt{x+1}+2)}{x+1} \\ = \frac{x-\sqrt{x+1}+2}{\sqrt{x+1}}$$

$$D'où \lim_{x \to -1^{+}} \frac{f(x) - f(-1)}{x + 1} = \lim_{x \to -1^{+}} \frac{x - \sqrt{x + 1} + 2}{\sqrt{x + 1}} = +\infty$$

Donc f n'est pas dérivable à droite en -1

3. Pour tout
$$x \in]-1; +\infty[$$
; on $a : f'(x) = ((\sqrt{x+1}-1)^3)'$

$$= 3(\sqrt{x+1}-1)'(\sqrt{x+1}-1)^{3-1}$$

$$= 3\frac{1}{2\sqrt{x+1}}(\sqrt{x+1}-1)^2$$

$$= \frac{3}{2} \times \frac{(\sqrt{x+1}-1)^2}{\sqrt{x+1}}$$

$$\exists t \ comme \ \left(\forall x \in]-1; +\infty[\right) ; \left(\sqrt{x+1}-1 \right)^2 \geq 0 \ et \left(\sqrt{x+1}-1 \right)^2 \geq 0$$

Alors
$$(\forall x \in]-1;+\infty[)$$
; $f'(x) \ge 0$

Donc f est croissante sur $[-1; +\infty]$

4. a)
$$(\forall x \in [0; +\infty[); f'(x) > 0 \Rightarrow g'(x) > 0)$$

D'où g est strictement croissante sur $[D; +\infty[$; par suite elle admet une fonction réciproque g^{-1} définie sur un intervalle $J = f([D; +\infty[)$

$$= \left[f(D); \lim_{x \to +\infty} f(x) \right]$$
$$= \left[f(D); \lim_{x \to +\infty} f(x) \right]$$

$$\bullet f(D) = D$$

$$\bullet \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(\sqrt{x+1} - 1 \right)^{3}$$

$$= \lim_{x \to +\infty} \left(\frac{\left(\sqrt{x+1} - 1 \right) \left(\sqrt{x+1} + 1 \right)}{\left(\sqrt{x+1} + 1 \right)} \right)^{3}$$

$$= \lim_{x \to +\infty} \left(\frac{\left(\sqrt{x+1} \right)^{2} - 1}{\left(\sqrt{x+1} + 1 \right)} \right)^{3}$$

$$= \lim_{x \to +\infty} \left(\frac{x}{\left(\sqrt{x+1}+1\right)} \right)^{3}$$

$$= \lim_{x \to +\infty} \left(\frac{x}{\left(\sqrt{x+1}+1\right)} \right)^{3} \quad \text{on pose } t = \sqrt{x+1} \text{ quand } x \to +\infty \text{ alors } t \to +\infty$$

$$Et t = \sqrt{x+1} \Rightarrow x = t^{2} - 1$$

$$\lim_{x \to +\infty} \left(\frac{x}{\left(\sqrt{x+1}+1\right)} \right)^{3} = \lim_{t \to +\infty} \left(\frac{t^{2}-1}{\left(t+1\right)} \right)^{3}$$

$$= \lim_{t \to +\infty} \left(t \right)^{3} = +\infty$$

$$\text{Ponc } \lim_{x \to +\infty} f(x) = +\infty$$

$$\operatorname{Donc} \lim_{x \to +\infty} f(x) = +\infty$$

$$\mathcal{E} + \mathcal{J} = [0; +\infty[$$

b) Pour tout
$$x \in \mathcal{J}$$
; on $a: y = g^{-1}(x) \Rightarrow x = g(y)$

$$\Rightarrow x = (\sqrt{y+1} - 1)^{3}$$

$$\Rightarrow \sqrt[3]{x} = \sqrt{y+1} - 1$$

$$\Rightarrow \sqrt[3]{x} + 1 = \sqrt{y+1}$$

$$\Rightarrow (\sqrt[3]{x} + 1)^{2} = y + 1$$

$$\Rightarrow y = (\sqrt[3]{x} + 1)^{2} - 1$$

$$\Rightarrow 9$$

$$D'où g^{-1}(x) = (\sqrt[3]{x} + 1)^2 - 1 ; \text{pour tout } x \in \mathcal{J}$$

Exercice 3

Etudier la continuité en x_0 de chacune des fonctions suivantes :

1.
$$\begin{cases} f(x) = \frac{1 - \sqrt{1 - x}}{x} & \text{si } x \neq 0 \\ f(0) = \frac{1}{2} & \text{xi } x \neq 2 \end{cases}$$
2.
$$\begin{cases} f(x) = \frac{|x^2 - 3x + 2|}{x^2 - 4} & \text{si } x \neq 2 \\ f(2) = \frac{1}{4} & \text{xi } x \neq 2 \end{cases}$$

Correction Exercice 3

1. Calculons $\lim_{x\to 0} f(x)$

 $\lim_{x\to 0} f(x) = \lim_{x\to 0} \frac{1-\sqrt{1-x}}{x} \text{ en remplaçant } x \text{ par 0 on obtient une forme indéterminée "0"}$

Pour
$$x \neq 0$$
 on a: $\frac{1 - \sqrt{1 - x}}{x} = \frac{\left(1 - \sqrt{1 - x}\right)\left(1 + \sqrt{1 - x}\right)}{x\left(1 + \sqrt{1 - x}\right)}$
$$= \frac{1 - \left(1 - x\right)}{x\left(1 + \sqrt{1 - x}\right)}$$
$$= \frac{1}{\left(1 + \sqrt{1 - x}\right)}$$

$$\mathcal{D}'o\lambda \lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{1 - \sqrt{1 - x}}{x}$$

$$= \lim_{x \to 0} \frac{1}{\left(1 + \sqrt{1 - x}\right)} = \frac{1}{2}$$

Donc $\lim_{x\to 0} f(x) = f(0)$; par suite f est continue en $x_0 = 0$.

2.
$$\begin{cases} f(x) = \frac{|x^2 - 3x + 2|}{x^2 - 4} & si \quad x \neq 2 \\ f(2) = \frac{1}{4} & \end{cases}$$

Calculons $\lim_{x\to 2} f(x)$

 $\lim_{x \to 2} f(x) = \lim_{x \to 2} \frac{\left| x^2 - 3x + 2 \right|}{x^2 - 4}$ en remplaçant x par 0 on obtient une forme indéterminée $\frac{0}{0}$,,

ZONE PUBLICITAIRE

Pour
$$x \neq 2$$
 on a: $\frac{|x^2 - 3x + 2|}{x^2 - 4} = \frac{|x - 2||x - 1|}{(x - 2)(x + 2)}$

Donc •
$$si \ x > 2$$
; $\frac{\left|x^2 - 3x + 2\right|}{x^2 - 4} = \frac{(x - 2)(x - 1)}{(x - 2)(x + 2)}$
$$= \frac{x - 1}{x + 2}$$

$$D'ou \lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{+}} \frac{x-1}{x+2} = \frac{1}{4}$$

Donc $\lim_{x\to 2^+} f(x) = f(2)$; par suite f est continue a droite en $x_0 = 2$.

•
$$si \ x < 2$$
; $\frac{|x^2 - 3x + 2|}{x^2 - 4} = \frac{-(x - 2)(x - 1)}{(x - 2)(x + 2)}$
$$= \frac{-x + 1}{x + 2}$$

$$D'o\dot{a} \lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} \frac{-x+1}{x+2} = -\frac{1}{4}$$

D'où $\lim_{x\to 2^{-}} f(x) = \lim_{x\to 2^{-}} \frac{-x+1}{x+2} = -\frac{1}{4}$ Donc $\lim_{x\to 2^{-}} f(x) \neq f(2)$; par suite f n'est pas continue à gauche en $x_0 = 2$.

Exercice 4

Etudier la continuité en $x_{\scriptscriptstyle 0}$ de chacune des fonctions suivantes :

1.
$$\begin{cases} f(x) = \frac{x\sqrt{x} - 1}{x - x^2} & \text{si } x \neq 1 \\ f(1) = -\frac{3}{2} \end{cases}$$

1.
$$\begin{cases} f(x) = \frac{x\sqrt{x} - 1}{x - x^2} & \text{si } x \neq 1 \\ f(1) = -\frac{3}{2} & \text{si } x > 2 \end{cases}$$

$$\begin{cases} f(x) = \frac{x - \sqrt{x + 2}}{x - 2} & \text{si } x > 2 \\ 2. \begin{cases} f(2) = \frac{3}{4} & \text{si } x < 2 \end{cases}$$

$$f(x) = \frac{\sin(\frac{\pi x}{2})}{x - 2} & \text{si } x < 2 \end{cases}$$

ZONE PUBLICITAIRE

Correction Exercice 4

1.
$$\begin{cases} f(x) = \frac{x\sqrt{x} - 1}{x - x^2} & \text{si} \quad x \neq 1 \\ f(1) = -\frac{3}{2} \end{cases}$$

Calculons $\lim_{x \to 1} f(x)$

On a:
$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{x\sqrt{x} - 1}{x - x^2}$$
; on a une forme indéterminée du type " $\frac{0}{0}$ "

Pour
$$x \neq 1$$
 on a: $\frac{x\sqrt{x}-1}{x-x^2} = \frac{(x\sqrt{x}-1)(x\sqrt{x}+1)}{(x-x^2)(x\sqrt{x}+1)}$

$$= \frac{(x\sqrt{x})^{2} - 1}{(x - x^{2})(x\sqrt{x} + 1)}$$

$$= \frac{x^{3} - 1}{x(1 - x)(x\sqrt{x} + 1)}$$

$$= \frac{(x - 1)(x^{2} + x + 1)}{x(1 - x)(x\sqrt{x} + 1)}$$

$$= \frac{-(x^{2} + x + 1)}{x(x\sqrt{x} + 1)}$$

Donc
$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{x\sqrt{x} - 1}{x - x^2}$$

= $\lim_{x \to 1} \frac{-(x^2 + x + 1)}{x(x\sqrt{x} + 1)} = -\frac{3}{2}$

Donc $\lim_{x\to 1} f(x) = f(1)$; par suite f est continue en 1.

$$f(x) = \frac{x - \sqrt{x + 2}}{x - 2} \quad \text{si} \quad x > 2$$

$$2. \begin{cases} f(x) = \frac{3}{4} \\ f(x) = \frac{\sin\left(\frac{\pi x}{2}\right)}{x - 2} \quad \text{si} \quad x < 2 \end{cases}$$

Il s'agit d'étudier la continuité de f à droite puis à gauche de 2 car f est définie par deux expressions différente sur $]-\infty;2[$ et sur $]2;+\infty[$.

• Calculons
$$\lim_{x\to 2^-} f(x)$$

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} \frac{\sin\left(\frac{\pi x}{2}\right)}{x - 2}; \text{ on a une forme indéterminée du type "} \frac{0}{0} \text{ "}$$

On posant
$$h(x) = \sin\left(\frac{\pi x}{2}\right)$$
; on a $h(2) = \sin(\pi) = 0$; donc:

$$\lim_{x \to 2^{-}} \frac{\sin\left(\frac{\pi x}{2}\right)}{x - 2} = \lim_{x \to 2^{-}} \frac{h(x) - h(2)}{x - 2}$$
 ;et comme h est dérivable en 2 alors :

$$\lim_{x \to 2^{-}} \frac{h(x) - h(2)}{x - 2} = h'(2) ; \text{ et } h'(x) = \left(\sin\left(\frac{\pi x}{2}\right)\right)'$$

$$= \frac{\pi}{2}\cos\left(\frac{\pi x}{2}\right)$$

$$D'où h'(2) = -\frac{\pi}{2}$$

Par suite $\lim_{x\to 2^-} f(x) \neq f(2)$; donc f n'est pas continue à gauche en 2.

• Calculons
$$\lim_{x \to 2^+} f(x)$$

On a:
$$\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} \frac{x - \sqrt{x + 2}}{x - 2}$$
; on a une forme indéterminée du type " $\frac{0}{0}$ "

Pour
$$x \neq 2$$
 on a:
$$\frac{x - \sqrt{x + 2}}{x - 2} = \frac{\left(x - \sqrt{x + 2}\right)\left(x + \sqrt{x + 2}\right)}{\left(x - 2\right)\left(x + \sqrt{x + 2}\right)}$$
$$= \frac{\left(x^2 - (x + 2)\right)}{\left(x - 2\right)\left(x + \sqrt{x + 2}\right)}$$
$$= \frac{\left(x^2 - x - 2\right)}{\left(x - 2\right)\left(x + \sqrt{x + 2}\right)}$$
$$= \frac{\left(x - 2\right)\left(x + \sqrt{x + 2}\right)}{\left(x - 2\right)\left(x + \sqrt{x + 2}\right)}$$
$$= \frac{x + 1}{x + \sqrt{x + 2}}$$

Donc
$$\lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{+}} \frac{x+1}{x+\sqrt{x+2}} = \frac{3}{4}$$

D'où $\lim_{x\to 2^+} f(x) = f(2)$; par suite f est continue à droite en 2.

Exercice 5

On considère la fonction of définie par : $f(x) = 4x + 1 + \frac{1}{x-1}$

- 1. Déterminer D_f , puis calculer f(0); $f\left(\frac{1}{2}\right)$ et $f\left(\frac{3}{2}\right)$
- 2. Calculer les limites de f Aux bornes de \mathcal{D}_{f}
- 3. Calculer f'(x); pour tout $x \in \mathcal{D}_f$
- 4. Dresser le tableau de variations de f
- 5. Donner les Images des intervalles Suivants : $]-\infty; \frac{1}{2}]; [0; \frac{1}{2}]$ et $]1; \frac{3}{2}]$
- 6. Montrer que l'équation f(x) = 0 admet une solution unique dans l'intervalle $\frac{1}{2}$; $\frac{1}{2}$

Correction Exercice 5

1.
$$\mathcal{D}_f = \{ x \in \mathcal{IR} \mid x - 1 \neq 0 \}$$

= $\{ x \in \mathcal{IR} \mid x \neq 1 \}$

$$= \left] -\infty; 1 \left[\cup \right] 1; +\infty \right[$$

$$\sim f(0) = 4 \times 0 + 1 + \frac{1}{0 - 1} = 0$$

$$\sim f\left(\frac{1}{2}\right) = 4 \times \frac{1}{2} + 1 + \frac{1}{\frac{1}{2} - 1} = 1$$

$$\sim f\left(\frac{3}{2}\right) = 4 \times \frac{3}{2} + 1 + \frac{1}{\frac{3}{2} - 1} = 9$$

ZONE PUBLICITAIRE

2. •
$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} 4x + 1 + \frac{1}{x - 1} = -\infty \left(\operatorname{car} \lim_{x \to -\infty} \frac{1}{x - 1} = 0 \right)$$

•
$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} 4x + 1 + \frac{1}{x - 1} = -\infty (car \lim_{x \to 1^{-}} \frac{1}{x - 1} = -\infty)$$

•
$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} 4x + 1 + \frac{1}{x - 1} = +\infty \left(car \lim_{x \to 1^+} \frac{1}{x - 1} = +\infty \right)$$

•
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} Ax + 1 + \frac{1}{x-1} = +\infty \left(car \lim_{x \to +\infty} \frac{1}{x-1} = 0 \right)$$

3. Calculons f'(x); pour tout $x \in \mathcal{D}_f$; f est dérivable sur son domaine de définition comme somme et quotient de fonctions dérivables; et pour tout $x \in \mathcal{D}_f$ on a :

$$f'(x) = \left(4x + 1 + \frac{1}{x - 1}\right)'$$

$$= 4 - \frac{1}{(x - 1)^2}$$

$$= \frac{4(x - 1)^2 - 1}{(x - 1)^2}$$

$$= \frac{(2(x - 1))^2 - 1}{(x - 1)^2}$$

$$= \frac{(2(x - 1) - 1)(2(x - 1) + 1)}{(x - 1)^2}$$

$$= \frac{(2x - 3)(2x - 1)}{(x - 1)^2}$$

Donc
$$f'(x) = \frac{(2x-3)(2x-1)}{(x-1)^2}$$
; pour tout $x \in \mathcal{D}_f$.

3. le signe de f'(x) est celui de $(2x-3)(2x-1)sur]-\infty;1[\cup]1;+\infty[$ Tableau de signe de (2x-3)(2x-1)

X	-8	1/2		<u>3</u> 2		+∞
2x - 1	_	þ	+		+	
2x - 3	_		_	ф	+	
(2x-3)(2x-1)	+	b	_	ф	+	

$$D'où: \bullet f'(x) \ge 0 \text{ sur } \left] -\infty; \frac{1}{2} \right] \text{ et sur } \left[\frac{3}{2}; +\infty \right[$$

$$\bullet f'(x) \ge 0 \text{ sur } \left[\frac{1}{2}; \frac{3}{2} \right]$$

4. Tableau de variations de f

Х	$-\infty$ $\frac{1}{2}$ 1 $\frac{3}{2}$ $+\infty$)
f'(x)	+	
f(x)	$-\infty$ $+\infty$ q $+\infty$	0

5. • Comme f est continue strictement croissante sur $\left]-\infty; \frac{1}{2}\right[et]$

$$\left]-\infty;\frac{1}{2}\right] \subset \left]-\infty;1\left[\cup\right]1;+\infty\left[;donc:f\left(\left]-\infty;\frac{1}{2}\right]\right) = \left[\lim_{x\to\infty}f(x);f\left(\frac{1}{2}\right)\right]$$
$$=\left]-\infty;1\right]$$

$$\operatorname{Donc} f\left(\left[-\infty; \frac{1}{2}\right]\right) = \left[-\infty; 1\right]$$

• Comme f est continue strictement croissante sur $\left[0; \frac{1}{2}\right] et \left[0; \frac{1}{2}\right] \subset]-\infty; 1[\cup]1; +\infty[;$

donc:
$$f\left(\left[0; \frac{1}{2}\right]\right) = \left[f(0); f\left(\frac{1}{2}\right)\right]$$

$$Donc f\left(\left[D; \frac{1}{2}\right]\right) = \left[D; 1\right]$$

• Comme f est continue strictement décroissante sur $\left]1;\frac{3}{2}\right]$ et $\left]1;\frac{3}{2}\right]$ \subset $]-\infty;1[\cup]1;+\infty[$

donc:
$$f\left(1; \frac{3}{2}\right) = \left[f\left(\frac{3}{2}\right); \lim_{x \to 1^+} f(x)\right]$$

$$=$$
 $[Q; +\infty[$

Donc
$$f\left(\left[1; \frac{3}{2}\right]\right) = \left[9; +\infty\right[$$

6. f est continue et strictement décroissante sur $\frac{1}{2}$; 1 et

$$f\left(\frac{1}{2};1\right) = \lim_{x \to 1^{-}} f(x); f\left(\frac{1}{2}\right)$$
$$=]-\infty; 1[$$

De plus $D \in]-\infty;1[$

Donc d'après le TVI l'équation f(x) = 0 admet une solution unique dans l'intervalle

$$\left]\frac{1}{2};1\right[$$

Exercice 6

Soit la fonction définie sur IR par : $g(x) = x^3 - x^2 + 3x + 1$

- 1) a) Montrer que la fonction est continue et strictement monotone sur ${\bf IR}$. b) Déduire que l'équation $g(x)={\bf D}$ admet une unique solution α dans l'intervalle]-1;0[
- 2) En utilisant la méthode de dichotomie, donner un encadrement de α d'amplitude 0, 25 Montrer que : $\alpha = -\sqrt[3]{\alpha^2 - 3\alpha - 1}$

Correction Exercice 6

$$g(x) = x^3 - x^2 + 3x + 1$$
; pour tout $x \in \mathbb{IR}$

1. a) g est un polynôme de degré 3 donc elle est continue et dérivable sur IR ; et pour

tout
$$x \in \mathbb{IR}$$
; on $a: g'(x) = (x^3 - x^2 + 3x + 1)'$

$$= 3x^2 - 2x + 3$$

$$= 3\left(x^2 - \frac{2}{3}x + 1\right)$$

$$= 3\left(x^2 - 2 \times \frac{1}{3}x + \left(\frac{1}{3}\right)^2 + \frac{8}{9}\right)$$

$$= 3\left(\left(x - \frac{1}{3}\right)^2 + \frac{8}{9}\right)$$

$$= 3\left(x - \frac{1}{3}\right)^2 + \frac{8}{9}$$

Donc $(\forall x \in IR)$; g'(x) > 0

D'où g est strictement croissante sur IR.

ZONE PUBLICITAIRE

b) g est continue strictement croissante sur IR en particulier sur l'intervalle $\left[-1;0\right]$

e+
$$g([-1;0]) = [g(-1);g(0)]$$
 $(g(-1) = -4 ; g(0) = 1)$
= [-4;1]

Et $D \in [-4;1]$ ou $g(-1) \times g(0) < D$; donc d'après le TVI l'équation g(x) = D admet une unique solution α dans l'intervalle]-1;D[

2) Calculons l'image de $-\frac{1}{2}$ milieu de l'intervalle]-1;0[; on a:

$$g\left(-\frac{1}{2}\right) = \left(-\frac{1}{2}\right)^3 - \left(-\frac{1}{2}\right)^2 + 3 \times \left(-\frac{1}{2}\right) + 1 = -\frac{7}{8}$$

D'où $g\left(-\frac{1}{2}\right) < 0$; g(0) > 0; alors $\alpha \in \left]-\frac{1}{2}; 0\right[$ et comme l'amplitude de l'intervalle

 $\left]-\frac{1}{2};0\right[$ est 0,5 alors on refait la même opération pour réduire l'amplitude de l'encadrement de α .

Calculons l'image de $-\frac{1}{4}$ milieu de l'intervalle $-\frac{1}{2}$; of ; on a :

$$9\left(-\frac{1}{4}\right) = \left(-\frac{1}{4}\right)^3 - \left(-\frac{1}{4}\right)^2 + 3 \times \left(-\frac{1}{4}\right) + 1 = \frac{11}{64}$$

 $\text{D'où } g\left(-\frac{1}{4}\right) > 0 \text{ ; } g\left(-\frac{1}{2}\right) < 0 \text{ ; alors } \alpha \in \left]-\frac{1}{4}; -\frac{1}{2}\right[\text{ et l'intervalle } \right] -\frac{1}{4}; -\frac{1}{2}\left[\text{ est l'intervalle } \right] -\frac{1}{4}; -\frac{1}{4}\left[\text{ est l'intervalle$

d'amplitude 0,25 ; par suite on a obtenue l'encadrement de lpha voulu.

On
$$\alpha: g(\alpha) = 0 \Rightarrow \alpha^3 - \alpha^2 + 3\alpha + 1 = 0$$

$$\Rightarrow \alpha^3 - \alpha^2 + 3\alpha + 1 = 0$$

$$\Rightarrow \alpha^3 = \alpha^2 - 3\alpha - 1$$

$$\Rightarrow \alpha = \pm \sqrt[3]{\alpha^2 - 3\alpha - 1} \quad \text{et comme } \alpha < 0$$

Alors
$$\alpha = -\sqrt[3]{\alpha^2 - 3\alpha - 1}$$

ZONE PUBLICITAIRE

Problème 1

On considère la fonction f définie par : $f(x) = x - 2\sqrt{x+1}$

Et soit (C_f) sa courbe représentative dans un repère orthonormé $(O; \vec{i}; \vec{j})$.

- 1) Déterminer $D_{\scriptscriptstyle f}$ le domaine de définition de f.
- 2) Calculer $\lim_{x\to +\infty} f(x)$
- 3) Etudier la continuité de f sur l'intervalle $[-1; +\infty[$.
- 4) Etudier la dérivabilité de f à droite en -1; puis interpréter géométriquement le résultat.

5) Etudier les branches infinies au voisinage $de + \infty$.

6) Montrer que:
$$\forall x > -1$$
; $f'(x) = \frac{x}{\sqrt{x+1}(\sqrt{x+1}+1)}$

- 7) Dresser le tableau de variation de f
- 8) Résoudre l'équation f(x) = 0 pour tout $x \ge -1$. Interpréter graphiquement ce résultat.
- 9) Tracer (C_{f}) dans le repère orthonormé $(C; \vec{i}; \vec{j})$.

Correction Problème 1

$$f(x) = x - 2\sqrt{x+1}$$

1)
$$\mathcal{D}_f = \{x \in \mathbb{IR} / x + 1 \ge 0\}$$

= $\{x \in \mathbb{IR} / x \ge -1\}$
= $[-1; +\infty[$

2) Calculons $\lim_{x\to +\infty} f(x)$

On a: $\lim_{x\to +\infty} f(x) = \lim_{x\to +\infty} \left(x-2\sqrt{x+1}\right)$; en remplaçant x par $+\infty$ on obtient une forme indéterminée $(+\infty)+(-\infty)$; alors enlevons l'indétermination; pour x>0 on a:

$$x - 2\sqrt{x + 1} = \left(x - 2\sqrt{x^2 \left(\frac{1}{x} + \frac{1}{x^2}\right)}\right)$$

$$= \left(x - 2x\sqrt{\frac{1}{x} + \frac{1}{x^2}}\right)(\sqrt{x^2} = x \text{ quand } x > 0)$$

$$= x\left(1 - 2\sqrt{\frac{1}{x} + \frac{1}{x^2}}\right)$$

$$\operatorname{Donc} \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x \left(1 - 2\sqrt{\frac{1}{x} + \frac{1}{x^2}} \right) = +\infty \; ; \operatorname{car} \lim_{x \to +\infty} \frac{1}{x} + \frac{1}{x^2} = 0$$

3) la fonction $x \mapsto \sqrt{x} + 1$ est continue sur son domaine de définition qui est $[-1; +\infty]$ et |a|fonction $x \mapsto x$ est continue sur IR en particulier sur $[-1; +\infty]$; par suite la fonction f est continue sur $[-1; +\infty[$ en tant que somme et produit de deux fonctions continues.

4) Calculons
$$\lim_{x \to +-1^+} \frac{f(x) - f(-1)}{x - (-1)}$$

On a:
$$\lim_{x \to +-1^{+}} \frac{f(x) - f(-1)}{x - (-1)} = \lim_{x \to +-1^{+}} \frac{(x - 2\sqrt{x+1}) - (-1 - 2\sqrt{-1+1})}{x+1}$$

$$= \lim_{x \to +-1^{+}} \frac{x - 2\sqrt{x+1} + 1}{x+1}$$

$$= \lim_{x \to +-1^{+}} \frac{(x+1) - 2\sqrt{x+1}}{x+1}$$

$$= \lim_{x \to +-1^{+}} 1 - \frac{2}{\sqrt{x+1}} = -\infty (car \lim_{x \to +-1^{+}} \frac{1}{\sqrt{x+1}} = +\infty)$$

On conclut que f n'est pas dérivable à droite en -1 et que (C_{+}) admet une demi-tangente au point d'abscisse -1 dirigée vers le bas.

5) on a
$$\lim_{x \to +\infty} f(x) = +\infty$$
; calculous $\lim_{x \to +\infty} \frac{f(x)}{x}$

$$\bullet \lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{x - 2\sqrt{x + 1}}{x}$$

$$= \lim_{x \to +\infty} 1 - \frac{2\sqrt{x + 1}}{x}$$

$$= \lim_{x \to +\infty} 1 - 2\sqrt{\frac{x + 1}{x^2}} \quad e \neq = \lim_{x \to +\infty} \frac{x + 1}{x^2} = \lim_{x \to +\infty} \frac{1}{x} = 0$$

Alors
$$\lim_{x \to +\infty} \frac{f(x)}{x} = 1$$

Calculons $\lim f(x) - x$

$$\lim_{x \to +\infty} f(x) - x = \lim_{x \to +\infty} x - 2\sqrt{x+1} - x$$

$$= \lim_{x \to +\infty} - 2\sqrt{x+1} = -\infty$$

 $\mathcal{D}'o\dot{a}\lim_{x\to +\infty} f(x) = +\infty$; $\lim_{x\to +\infty} \frac{f(x)}{x} = 1$ et $\lim_{x\to +\infty} f(x) - x = -\infty$; on conclut que $(\mathcal{C}_{\mathcal{F}})$ admet une branche parabolique de direction la droite d'équation y = x au voisinage de $+\infty$

(4) Pour tout
$$x > -1$$
; on $a : f'(x) = (x - 2\sqrt{x + 1})^{\frac{1}{2}}$
$$= 1 - \frac{2}{2\sqrt{x + 1}}$$

$$= \frac{\sqrt{x+1} - 1}{\sqrt{x+1}}$$

$$= \frac{(\sqrt{x+1} - 1)(\sqrt{x+1} + 1)}{\sqrt{x+1}(\sqrt{x+1} + 1)}$$

$$= \frac{(x+1-1)}{\sqrt{x+1}(\sqrt{x+1} + 1)}$$

$$= \frac{x}{\sqrt{x+1}(\sqrt{x+1} + 1)}$$

$$\mathcal{D}'o\dot{\alpha} \ \forall x > -1 \ ; \ f'(x) = \frac{x}{\sqrt{x+1}(\sqrt{x+1}+1)}$$

7) On a f'(x) est du même signe que x d'où:

Tableau de variation de f sur $[-1; +\infty]$

X	-1	P		$+\infty$
f'(x)	_	Þ	+	
f(x)	-1	* -2		+∞

8) on a pour
$$x \ge -1$$
: $f(x) = 0 \Leftrightarrow x - 2\sqrt{x+1} = 0$

$$\Leftrightarrow x + 1 - 2\sqrt{x + 1} + 1 = 2$$

$$\Leftrightarrow (\sqrt{x + 1})^2 - 2\sqrt{x + 1} + 1 = 2$$

$$\Leftrightarrow (\sqrt{x + 1} - 1)^2 = 2$$

$$\Leftrightarrow \sqrt{x + 1} - 1 = \pm\sqrt{2}$$

$$\Leftrightarrow \begin{cases} \sqrt{x + 1} - 1 = -\sqrt{2} \\ \sqrt{x + 1} - 1 = \sqrt{2} \end{cases}$$

$$\Leftrightarrow \begin{cases} \sqrt{x + 1} - 1 = \sqrt{2} \\ \sqrt{x + 1} - 1 = \sqrt{2} \end{cases}$$

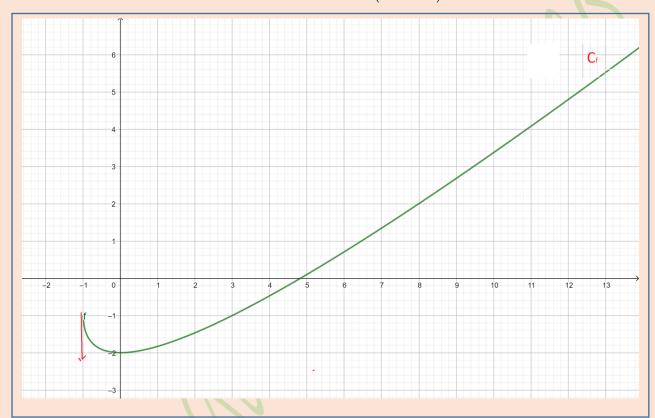
$$\Leftrightarrow \begin{cases} \sqrt{x + 1} = 1 - \sqrt{2} \\ \sqrt{x + 1} = 1 + \sqrt{2} \end{cases}$$

$$\Leftrightarrow \begin{cases} x + 1 = (1 - \sqrt{2})^2 \\ x + 1 = (1 + \sqrt{2})^2 \end{cases}$$

$$\Leftrightarrow \begin{cases} x + 1 = 3 - 2\sqrt{2} \\ x + 1 = 3 + 2\sqrt{2} \end{cases}$$

 $\text{Comme } 2\left(1-\sqrt{2}\right) \in [-1;+\infty[\text{ et } 2\left(1+\sqrt{2}\right) \in [-1;+\infty[\text{ ; on conclut que } \left(\mathcal{C}_{_{\!\mathit{F}}}\right)\text{ coupe l'axe des } \right))$ abscisses en deux points d'abscisses respectives $2(1-\sqrt{2})$ et $2(1+\sqrt{2})$.

9) Construction de $(C_{\mathcal{F}})$ dans le repère orthonormé $(\mathcal{O}; \vec{i}; \vec{j})$.



Problème 2

Soit f la fonction définie par : $f(x) = \frac{x}{\sqrt{x-1}}$ et (C_{f}) sa courbe représentative dans un repère orthonormé $(\mathcal{O}; \vec{i}; \vec{j})$.

- 1) Déterminer \mathcal{D}_{f} le domaine de définition de f.
- 2) Calculer $\lim f(x)$; puis interpréter géométriquement le résultat.
- 3) a) Montrer que : $\lim_{x \to +\infty} f(x) = +\infty$.
 - b) Etudier la branche infinie de $\left(C_f
 ight)$ au voisinage de $+\infty$.
- 4) a) Montrer que : $\forall x \in]1; +\infty[; f'(x) = \frac{x-2}{2(x-1)\sqrt{x-1}}]$
 - b) Dresser le tableau de variations de f.

- b) Etudier la concavité de (C_{φ}) .
- c) Construire $(C_{\mathcal{F}})$ dans le repère $(O; \vec{i}; \vec{j})$.

Correction Problème 2

$$f(x) = \frac{x}{\sqrt{x-1}}$$
1) $\mathcal{D}_f = \{x \in \mathbb{IR} \mid x-1 \ge 0 \text{ et } x-1 \ne 0\}$

$$= \{x \in \mathbb{IR} \mid x-1 > 0 \}$$

$$= \{x \in \mathbb{IR} \mid x > 1 \}$$

$$= \{x \in \mathbb{IR} \mid x > 1 \}$$

2) Calculons $\lim_{x\to 1^+} f(x)$

On a:
$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} \frac{x}{\sqrt{x-1}}$$

$$= +\infty \quad (Car \lim_{x \to 1^{+}} \sqrt{x-1} = D^{+})$$
Alors (C_{f}) admet une asymptote verticale d'équation $x = 1$.

3) a) On a:
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x}{\sqrt{x-1}}$$
.
$$= \lim_{x \to +\infty} \sqrt{\frac{x^2}{x-1}}$$

$$\operatorname{Cr} \lim_{x \to +\infty} \frac{x^2}{x-1} = \lim_{x \to +\infty} \frac{x^2}{x} = \lim_{x \to +\infty} x = +\infty \text{ ; donc } \lim_{x \to +\infty} f(x) = +\infty$$

b) On a
$$\lim_{x \to +\infty} f(x) = +\infty$$
; calculous $\lim_{x \to +\infty} \frac{f(x)}{x}$

On a:
$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{\frac{x}{\sqrt{x-1}}}{x}$$
.

$$= \lim_{x \to +\infty} \frac{x}{\sqrt{x-1}} \times \frac{1}{x}$$

$$= \lim_{x \to +\infty} \frac{1}{\sqrt{x-1}}$$

$$\mathcal{D}'o\dot{u}\lim_{x\to +\infty} \frac{f(x)}{x} = 0$$
 (car $\lim_{x\to +\infty} \sqrt{x-1} = +\infty$)

 $\mathsf{Donc}(\mathcal{C}_{\!\scriptscriptstyleoldsymbol{arphi}})$ admet une branche parabolique de direction l'axe des abscisses aux voisinage de +∞.

4) a) Pour tout
$$x \in]1; +\infty[$$
; On $a: f'(x) = \left(\frac{x}{\sqrt{x-1}}\right)'$

$$= \frac{(x)' \times \sqrt{x-1} - x \times (\sqrt{x-1})'}{(\sqrt{x-1})^2}$$

$$= \frac{\sqrt{x-1} - x \times \frac{(x-1)'}{2\sqrt{x-1}}}{x-1}$$

$$= \frac{\sqrt{x-1} - \frac{x}{2\sqrt{x-1}}}{x-1}$$

$$= \frac{2\sqrt{x-1} - x}{2\sqrt{x-1}}$$

$$= \frac{2(x-1) - x}{2\sqrt{x-1}(x-1)}$$

$$= \frac{x-2}{2(x-1)\sqrt{x-1}}$$

$$\operatorname{Donc}\left(\forall x \in]1; +\infty[\right); f'(x) = \frac{x-2}{2(x-1)\sqrt{x-1}}$$

b)f'(x) est du même signe que(x-2); d'où le tableau de variations de f sur $]1;+\infty[$

X	_1 2 +0	0
f'(x)	+	
f(x)	f(2) = 2)

5) a) Pour tout
$$x \in]1; +\infty[$$
; On $a : f''(x) = \left(\frac{x-2}{2(x-1)\sqrt{x-1}}\right)^{n}$
$$= \frac{1}{2}\left((x-2)(x-1)^{-\frac{3}{2}}\right)^{n}$$

$$= \frac{1}{2} \left((x-2)'(x-1)^{\frac{3}{2}} + (x-2) \left((x-1)^{\frac{3}{2}} \right)' \right)$$

$$= \frac{1}{2} \left((x-1)^{\frac{3}{2}} + (x-2) \times \left(-\frac{3}{2} \right) \times (x-1)' \times (x-1)^{\frac{3}{2}-1} \right)$$

$$= \frac{1}{2} \left((x-1)^{\frac{3}{2}} + \left(-\frac{3(x-2)}{2} \right) \times (x-1)^{\frac{5}{2}} \right)$$

$$= \frac{1}{2} \left(\frac{1}{(x-1)\sqrt{x-1}} + \left(-\frac{3(x-2)}{2(\sqrt{x-1})^5} \right) \right)$$

$$= \frac{1}{2} \times \frac{1}{(x-1)\sqrt{x-1}} \left(1 - \frac{3(x-2)}{2(x-1)} \right)$$

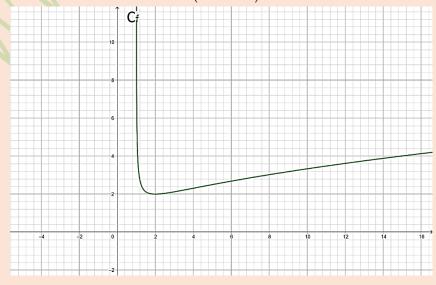
$$= \frac{1}{2} \times \frac{1}{(x-1)\sqrt{x-1}} \left(\frac{2(x-1)-3(x-2)}{2(x-1)} \right)$$

$$= \frac{2(x-1)-3(x-2)}{4(x-1)^2 \sqrt{x-1}}$$

$$= \frac{-x+4}{4(x-1)^2 \sqrt{x-1}}$$

Donc:
$$\forall x \in]1; +\infty[; f''(x) = \frac{-x+4}{4(x-1)^2 \sqrt{x-1}}$$

- b) f''(x) est du même signe que (-x+4); $D'où f''(x) \ge 0$ pour $x \le 4$ et $f''(x) \le 0$ pour $x \ge 4$ $Donc(C_f)$ est concave sur $[4;+\infty[$ et convexe sur $]-\infty;4]$.
- c) Construction de (C_{f}) dans le repère $(O; \vec{i}; \vec{j})$.



www.guessmaths.co <u>E-mail</u>: abdelaliguessouma@gmail.com whatsapp: 0604488896

Problème 3

Soit f la fonction définie par : $f(x) = x - 1 - \frac{1}{x} + \frac{1}{x^2}$

Et soit (C_f) sa courbe représentative dans un repère orthonormé $(C; \vec{i}; \vec{j})$.

- 1) déterminer $\mathcal{D}_{\varepsilon}$ le domaine de définition de f.
- 2) a) Calculer les limites de f aux bornes de \mathcal{D}_f .
 - b) Etudier les branches infinies de $(C_{\mathcal{F}})$.
- 3) Etudier la position relative de (C_{φ}) et la droite (Δ) : y = x 1.
- 4) a) Montrer que f est dérivable sur IR^* .
 - b) Calculer f'(x) pour tout $x \in IR^*$.
 - c) Etudier les variations de f.
- 5) Montrer que $I(3; \frac{16}{9})$ est un point d'inflexion de (C_{f}) .
- 6) Déterminer les points d'intersection de $(C_{\!\scriptscriptstyle\mathcal{F}})$ et l'axe des abscisses.
- 7) Construire (C_{f}) et la droite (Δ) dans le repère $(C; \vec{i}; \vec{j})$.
- 8) Déterminer graphiquement le signe de f(x) sur IR^* .
- 9) Construire dans le même repère $(O; \vec{i}; \vec{j})$ la courbe de la fonction g définie par :

$$(\forall x \in \mathcal{IR}^*)$$
; $g(x) = \left|x - \frac{1}{x}\right| \left|1 - \frac{1}{x}\right|$.

Correction Problème 3

$$f(x) = x - 1 - \frac{1}{x} + \frac{1}{x^2}$$

1)
$$\mathcal{D}_f = \{x \in \mathcal{IR} \mid x \neq 0\} = \mathcal{IR}^*$$

2) a) • Calculons
$$\lim_{x \to -\infty} f(x)$$

On a:
$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(x - 1 - \frac{1}{x} + \frac{1}{x^2} \right) = -\infty \left(\text{car } \lim_{x \to -\infty} \frac{1}{x} = \lim_{x \to -\infty} \frac{1}{x^2} = 0 \right)$$

• Calculons $\lim_{x \to +\infty} f(x)$

On a:
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(x - 1 - \frac{1}{x} + \frac{1}{x^2} \right) = +\infty \left(car \lim_{x \to +\infty} \frac{1}{x} = \lim_{x \to +\infty} \frac{1}{x^2} = 0 \right)$$

• Calculons $\lim_{x\to 0^-} f(x)$

On a:
$$\lim_{x\to 0^{-}} f(x) = \lim_{x\to 0^{-}} \left(x - 1 - \frac{1}{x} + \frac{1}{x^{2}}\right) = +\infty \left(car \lim_{x\to 0^{-}} \frac{1}{x} = \lim_{x\to 0^{-}} \frac{1}{x^{2}} = +\infty\right)$$

• Calculons $\lim_{x\to 0^+} f(x)$

On a:
$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \left(x - 1 - \frac{1}{x} + \frac{1}{x^2} \right) \cdots \mathcal{FI} \left(car \lim_{x \to 0^+} - \frac{1}{x} = -\infty \ et \lim_{x \to 0^-} \frac{1}{x^2} = +\infty \right)$$

Pour
$$x \neq 0$$
 on $a: x - 1 - \frac{1}{x} + \frac{1}{x^2} = x - 1 - \frac{1}{x^2}(x - 1)$
$$= \left(1 - \frac{1}{x^2}\right)(x - 1)$$

Donc
$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \left(1 - \frac{1}{x^{2}}\right)(x - 1) = +\infty$$

b) • On a:
$$\lim_{x \to -\infty} f(x) = -\infty$$
; calculous $\lim_{x \to -\infty} \frac{f(x)}{x}$

$$\lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \frac{x - 1 - \frac{1}{x} + \frac{1}{x^2}}{x}$$

$$= \lim_{x \to -\infty} 1 - \frac{1}{x} - \frac{1}{x^2} + \frac{1}{x^3} = 1$$

Calculons $\lim_{x \to -\infty} f(x) - x$

$$\lim_{x \to -\infty} f(x) - x = \lim_{x \to -\infty} \left(x - 1 - \frac{1}{x} + \frac{1}{x^2} - x \right)$$

$$= \lim_{x \to -\infty} \left(-1 - \frac{1}{x} + \frac{1}{x^2} \right) = -1 \left(car \lim_{x \to -\infty} \frac{1}{x} = \lim_{x \to -\infty} \frac{1}{x^2} = 0 \right)$$

D'où (C_{f}) admet une asymptote oblique d'équation y = x - 1 aux voisinage de $-\infty$

• On a:
$$\lim_{x \to +\infty} f(x) = +\infty$$
; calculous $\lim_{x \to +\infty} \frac{f(x)}{x}$

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{x - 1 - \frac{1}{x} + \frac{1}{x^2}}{x}$$

$$= \lim_{x \to +\infty} 1 - \frac{1}{x} - \frac{1}{x^2} + \frac{1}{x^3} = 1$$

Calculons $\lim_{x \to \infty} f(x) - x$

$$\lim_{x \to +\infty} f(x) - x = \lim_{x \to +\infty} \left(x - 1 - \frac{1}{x} + \frac{1}{x^2} - x \right)$$

$$= \lim_{x \to +\infty} \left(-1 - \frac{1}{x} + \frac{1}{x^2} \right) = -1 \left(car \lim_{x \to +\infty} \frac{1}{x} = \lim_{x \to +\infty} \frac{1}{x^2} = 0 \right)$$

3) Etudions le signe de f(x)-(x-1)

Donc f(x)-(x-1) est du même signe que (1-x); par suite:

• (C_F) est au-dessus de (Δ) : y = x - 1 sur l'intervalle $]-\infty; 0[$ et l'intervalle]0;1]

- $(C_{\mathcal{F}})$ est au-dessous de (Δ) : y = x 1 sur l'intervalle $[1; +\infty]$
- 4) a) f est dérivable sur IR^* comme somme de fonction dérivable sur IR^*

(la fonction $x \mapsto (x-1)$; la fonction $x \mapsto -\frac{1}{x}$ et la fonction $x \mapsto \frac{1}{x^2}$)

b) Pour tout
$$x \in IR^*$$
; on $a : f'(x) = \left(x - 1 - \frac{1}{x} + \frac{1}{x^2}\right)'$

$$= 1 + \frac{1}{x^2} - \frac{2x}{(x^2)^2}$$

$$= 1 + \frac{1}{x^2} - \frac{2}{x^3}$$

$$= \frac{x^3 + x - 2}{x^3}$$

$$= \frac{x^3 - 1 + x - 1}{x^3}$$

$$= \frac{(x - 1)(x^2 + x + 1) + x - 1}{x^3}$$

$$= \frac{(x - 1)(x^2 + x + 1 + 1)}{x^3}$$

$$= \frac{(x - 1)(x^2 + x + 2)}{x^3}$$

$$= \left(\frac{x - 1}{x}\right) \frac{(x^2 + x + 2)}{x^2}$$

$$\operatorname{Ponc}\left(\forall x \in \operatorname{IR}^*\right); f'(x) = \left(\frac{x-1}{x}\right) \frac{\left(x^2 + x + 2\right)}{x^2}$$

c) Comme $x^2+x+2>0$ Pour tout $x\in IR^*$ (on calcule le discriminant de l'équation du 2éme degré et on trouve qu'il est négatif) ; alors f'(x) est du même signe que

$$\left(\frac{x-1}{x}\right)$$
; d'où:

Tableau de signe de f'(x)

X	$-\infty$	P	,	1		$+\infty$
Х	_	b		+		
<i>x</i> – 1	_			ф	+	
f'(x)	+	ф	_		+	

D'où f est décroissante sur l'intervalle [0;1[et croissante sur l'intervalle] $-\infty$;0] et sur l'intervalle]1;+∞[

5)
$$(\forall x \in \mathbb{IR}^*)$$
; $f'(x) = \left(\frac{x-1}{x}\right) \frac{\left(x^2 + x + 2\right)}{x^2}$
$$= \frac{x^3 + x - 2}{x^3}$$

Donc pour tout
$$x \in \mathbb{IR}^*$$
; on $a : f''(x) = \left(1 + \frac{1}{x^2} - \frac{2}{x^3}\right)'$

$$= \left(\frac{1}{x^2}\right)' - \left(\frac{2}{x^3}\right)'$$

$$= \frac{-2x}{x^4} - \left(\frac{-2 \times 3x^2}{x^6}\right)$$

$$= \frac{-2x}{x^4} + \frac{6x^2}{x^6}$$

$$= \frac{(-2x + 6)}{x^4}$$

$$= \frac{2(-x + 3)}{x^4}$$

D'où f" s'annule en changeant de signe en $x_0 = 3$; donc le point $I\left(3; \frac{16}{a}\right)$ est un point d'inflexion pour (C_{+}) .

6) Déterminer les points d'intersection de $(C_{\!arphi})$ et l'axe des abscisses revient à résoudre l'équation f(x) = 0

On
$$a: f(x) = 0 \Leftrightarrow x - 1 - \frac{1}{x} + \frac{1}{x^2} = 0$$

$$\Leftrightarrow \frac{x^3 - x^2 - x + 1}{x^2} = 0$$

$$\Leftrightarrow x^2 (x - 1) - (x - 1) = 0$$

$$\Leftrightarrow (x^2 - 1)(x - 1) = 0$$

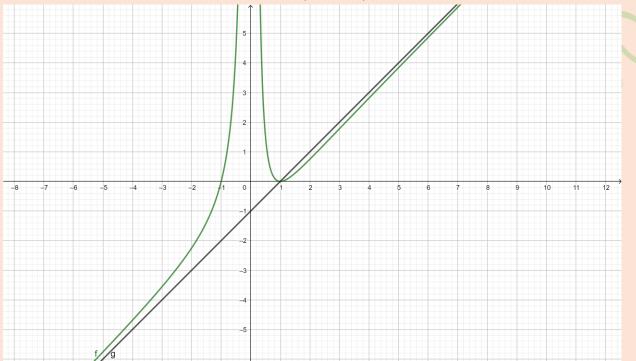
$$\Leftrightarrow (x+1)(x-1)(x-1) = 0$$

$$\Leftrightarrow (x+1)(x-1)^2 = 0$$

$$\Leftrightarrow x = -1 \text{ où } x = 1$$

Donc les points d'intersection de $(C_{\mathfrak{p}})$ et l'axe des abscisses sont A(-1;0) et B(1;0).

7) Construction de $(C_{\mathcal{F}})$ dans le repère $(O; \vec{i}; \vec{j})$.



8) Graphiquement (C_F) est au-dessous de l'axe des abscisses sur l'intervalle $]-\infty;-1]$ et au-dessus de sur l'axe des abscisses sur l'intervalle [-1;0[et sur l'intervalle $]0;+\infty[$.

$$\text{Donc}: \bullet (\forall x \in]-\infty; -1]); f(x) \leq 0$$

•
$$(\forall x \in [-1; D[\cup]D; +\infty[) ; f(x) \ge D$$

$$(\forall x \in \mathcal{IR}^*); g(x) = \left| x - \frac{1}{x} \right| \left| 1 - \frac{1}{x} \right|.$$

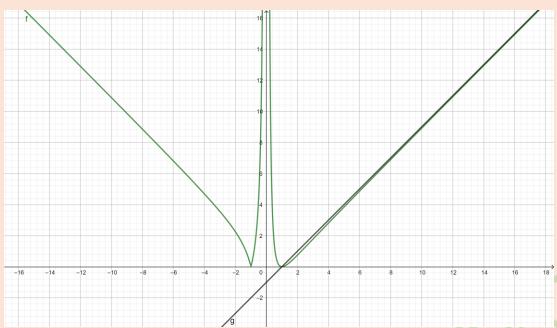
$$= \left| \left(x - \frac{1}{x} \right) \left(1 - \frac{1}{x} \right) \right|.$$

$$= \left| x - \frac{1}{x} - x \times \frac{1}{x} + \frac{1}{x^2} \right|.$$

$$= \left| x - 1 - \frac{1}{x} + \frac{1}{x^2} \right|.$$

$$= \left| f(x) \right|.$$

D'où la construction de la courbe de g



Problème 4

Partie A

Soit g la fonction définie sur IR par : $g(x) = 2x + \sqrt{4x^2 + 1}$

- 1) Montrer que : $(\forall x \in IR)$; $g(x) \times g(-x) = 1$.
- 2) a) Montrer que: $(\forall x \in IR^+)$; g(x) > 0.
 - b) En déduire que : $(\forall x \in IR^-)$; g(x) > 0.

<u>Partie B</u>

On considère la fonction f définie sur IR; par : $f(x) = x + \frac{1}{2}\sqrt{4x^2 + 1}$

Et soit (C_{f}) sa courbe représentative dans un repère orthonormé $(O; \vec{i}; \vec{j})$.

- 1) Montrer que $\lim_{x\to +\infty} f(x) = +\infty$ et $\lim_{x\to -\infty} f(x) = 0$.
- 2) Montrer que $(C_{\mathcal{F}})$ admet la droite (Δ) d'équation cartésienne y=2x comme asymptote oblique au voisinage de $+\infty$.
- 3) a) Montrer que f est dérivable sur IR et que : $(\forall x \in IR)$; $f'(x) = \frac{g(x)}{\sqrt{4x^2 + 1}}$
 - b) En déduire le tableau de variations de f sur IR.
 - c) Déterminer l'équation de la tangente (T) à (C_F) au point $A(0; \frac{1}{2})$
 - d) Construire $(C_{\mathcal{F}})$; (Δ) et (\mathcal{T}) dans le même repère orthonormé $(\mathcal{O};\vec{i};\vec{j})$.

Correction Problème 4

Partie A

$$g(x) = 2x + \sqrt{4x^2 + 1}$$
; pour tout $x \in IR$

1) Soit
$$x \in \mathbb{T}R$$
; on $a: g(x) \times g(-x) = \left(2x + \sqrt{4x^2 + 1}\right)\left(-2x + \sqrt{4x^2 + 1}\right)$

$$= \left(\sqrt{4x^2 + 1} + 2x\right)\left(\sqrt{4x^2 + 1} - 2x\right)$$

$$= \left(\left(\sqrt{4x^2 + 1}\right)^2 - (2x)^2\right)$$

$$= 4x^2 + 1 - 4x^2$$

$$= 1$$

Donc:
$$(\forall x \in IR)$$
; $g(x) \times g(-x) = 1$.

2) a) Soit
$$x \in \mathbb{IR}^+$$
; on a: $\begin{cases} 2x \ge 0 \\ \sqrt{4x^2 + 1} > 0 \end{cases} \Rightarrow 2x + \sqrt{4x^2 + 1} > 0$

Donc:
$$(\forall X \in IR^+)$$
; $g(X) > 0$.

b) Soit
$$x \in \mathbb{IR}^-$$
; on $a: g(x) \times g(-x) = 1$

Comme
$$(-x) \in IR^+ \Rightarrow g(-x) > 0$$

Alors
$$g(x) > 0$$

Donc:
$$(\forall x \in IR^-)$$
; $g(x) > 0$.

<u>Partie B</u>

$$f(x) = x + \frac{1}{2}\sqrt{4x^2 + 1}$$
; pour tout $x \in IR$

1) On a:
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(x + \frac{1}{2} \sqrt{4x^2 + 1} \right) = +\infty$$

et •
$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(x + \frac{1}{2} \sqrt{4x^2 + 1} \right) \cdots FI$$
.

Pour
$$x < 0$$
 on $a: x + \frac{1}{2}\sqrt{4x^2 + 1} = \frac{\left(x + \frac{1}{2}\sqrt{4x^2 + 1}\right)\left(x - \frac{1}{2}\sqrt{4x^2 + 1}\right)}{\left(x - \frac{1}{2}\sqrt{4x^2 + 1}\right)}$
$$= \frac{x^2 - \left(\frac{1}{2}\sqrt{4x^2 + 1}\right)^2}{\left(x - \frac{1}{2}\sqrt{4x^2 + 1}\right)}$$

$$= \frac{x^2 - \frac{4x^2 + 1}{4}}{\left(x - \frac{1}{2}\sqrt{4x^2 + 1}\right)}$$

$$= \frac{x^2 - x^2 + \frac{1}{4}}{\left(x - \frac{1}{2}\sqrt{4x^2 + 1}\right)}$$

$$= \frac{\frac{1}{4}}{\left(x - \frac{1}{2}\sqrt{4x^2 + 1}\right)}$$

Donc
$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{\frac{1}{4}}{\left(x - \frac{1}{2}\sqrt{4x^2 + 1}\right)} = 0$$

D'où:
$$\lim_{x \to +\infty} f(x) = +\infty$$
 et $\lim_{x \to -\infty} f(x) = 0$.
2) On a: $\lim_{x \to +\infty} f(x) = +\infty$ calculons $\lim_{x \to +\infty} f(x) = +\infty$

$$\bullet \lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \left(\frac{x + \frac{1}{2} \sqrt{4x^2 + 1}}{x} \right)$$

$$= \lim_{x \to +\infty} \left(1 + \frac{1}{2} \frac{\sqrt{4x^2 + 1}}{x} \right)$$

$$= \lim_{x \to +\infty} \left(1 + \frac{1}{2} \sqrt{\frac{4x^2 + 1}{x^2}} \right)$$

$$= 2$$

$$(Care line $\left(4x^2 + 1 \right) = 4 \text{ done line } 1 = 4$$$

$$(\operatorname{Car} \lim_{x \to +\infty} \left(\frac{4x^2 + 1}{x^2} \right) = 4 \operatorname{donc} \lim_{x \to +\infty} \frac{1}{2} \sqrt{\frac{4x^2 + 1}{x^2}} = 1)$$

Calculons $\lim_{x\to +\infty} f(x) - 2x$

$$\oint_{x \to +\infty} f(x) - 2x = \lim_{x \to +\infty} \left(x + \frac{1}{2} \sqrt{4x^2 + 1} - 2x \right)$$

$$= \lim_{x \to +\infty} \left(\frac{1}{2} \sqrt{4x^2 + 1} - x \right)$$

$$= \lim_{x \to +\infty} \frac{\left(\frac{1}{2}\sqrt{4x^2 + 1} - x\right)\left(\frac{1}{2}\sqrt{4x^2 + 1} + x\right)}{\left(\frac{1}{2}\sqrt{4x^2 + 1} + x\right)}$$

$$= \lim_{x \to +\infty} \frac{\left(\frac{1}{2}\sqrt{4x^2 + 1}\right)^2 - x^2}{\left(\frac{1}{2}\sqrt{4x^2 + 1} + x\right)}$$

$$= \lim_{x \to +\infty} \frac{\frac{4x^2 + 1}{4} - x^2}{\left(\frac{1}{2}\sqrt{4x^2 + 1} + x\right)}$$

$$= \lim_{x \to +\infty} \frac{x^2 + \frac{1}{4} - x^2}{\left(\frac{1}{2}\sqrt{4x^2 + 1} + x\right)}$$

$$= \lim_{x \to +\infty} \frac{\frac{1}{4}}{\left(\frac{1}{2}\sqrt{4x^2 + 1} + x\right)} = 0$$

Donc (C_F) admet la droite (Δ) d'équation cartésienney=2x comme asymptote oblique au Voisinage de $+\infty$.

ZONE PUBLICITAIRE

3) a) f est dérivable sur IR comme somme de deux fonctions dérivable sur IR (la fonction $x \mapsto x$ et la fonction $x \mapsto \frac{1}{2} \sqrt{4x^2 + 1}$) et Pour tout $x \in IR$; on a :

$$f'(x) = \left(x + \frac{1}{2}\sqrt{4x^2 + 1}\right)'$$

$$= 1 + \frac{1}{2} \times \frac{\left(4x^2 + 1\right)'}{2\sqrt{4x^2 + 1}}$$

$$= 1 + \frac{8x}{4\sqrt{4x^2 + 1}}$$

$$= 1 + \frac{2x}{\sqrt{4x^2 + 1}}$$

$$= \frac{\sqrt{4x^2 + 1} + 2x}{\sqrt{4x^2 + 1}}$$

$$= \frac{2x + \sqrt{4x^2 + 1}}{\sqrt{4x^2 + 1}}$$

Donc:
$$(\forall x \in IR)$$
; $f'(x) = \frac{g(x)}{\sqrt{4x^2 + 1}}$

b) D'après la partie B question 2) on a : $(\forall x \in IR)$; g(x) > 0; donc $(\forall x \in IR)$; f'(x) > 0; d'où le tableau de variations de f:

X	$-\infty$	$+\infty$
f'(x)	+	-
f(x)	0	→ +∞

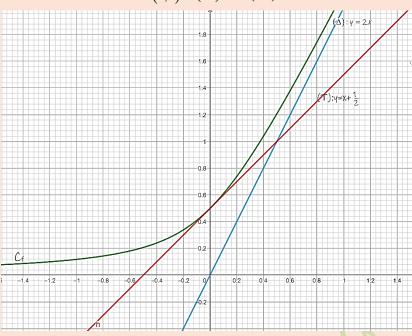
c) la tangente (T)à (C_{φ}) au point $A(0; \frac{1}{2})$ a pour équation :

$$y = f'(D)(x - D) + f(D)$$

$$= x + \frac{1}{2}$$

$$(\mathcal{T}): y = x + \frac{1}{2}$$

d) Construction de $(C_{\mathcal{F}})$; (Δ) et (\mathcal{T}) dans le même repère orthonormé $(\mathcal{O};\vec{i};\vec{j})$



Problème 5

1ère partie:

Soit g la fonction numérique définie sur] $-\infty$; -1] \cup [1; $+\infty$ [par : $g(x) = 2 - x^2 \sqrt{x^2 - 1}$.

1- Vérifier que : $x^6 - x^4 - 4 = (x^2 - 2)(x^4 + x^2 + 2)$

2- Etudier le signe de la fonction g sur $]-\infty;-1] \cup [1;+\infty[$

2ème partie:

On considère la fonction numérique f définie sur [-1;1] par : $f(x) = \frac{2x}{\sqrt{x^2 + 3}} - 1$

1 - Calculer f'(x) pour tout $x \in [-1;1]$.

2- Donner le tableau de variations de f sur [-1;1]

3- Calculer f(1), puis montrer que : $(\forall x \in [-1,1])$; $f(x) \leq D$

3ème partie:

Soit In la fonction définie sur par : $\begin{cases} h(x) = \frac{2\sqrt{x^2 - 1}}{x} - x + 1 & \text{si } x \in]-\infty; -1[\ \cup\]1; +\infty[\\ h(x) = \sqrt{x^2 + 3} & \text{si } x \in [-1; 1] \end{cases}$

Soit (C_n) sa courbe représentative dans un repère orthonormé $(O; \vec{i}; \vec{j})$

1 - Montrer que la fonction h est continue en 1 et -1.

2- Montrer que la courbe (C_n) admet un centre de symétrie $\mathcal{I}(D;1)$ sur l'intervalle $]-\infty;-1[\ \cup\]1;+\infty[$

b - En déduire par symétrie que la droite (\mathcal{D}_2) d'équation y=-x-1 est une asymptote oblique à la courbe (\mathcal{C}_n) au voisinage de $-\infty$

- 4- Etudier la dérivabilité de h en 1 à droite et interpréter le résultat géométriquement
- 5- a Calculer h'(x) pour tout $x \in]-\infty; -1[\cup]1; +\infty[$
 - b En déduire le signe de h'(x) sur] $-\infty$; $-1[\cup]1$; $+\infty[.$
- 6- a Calculer h'(x) pour tout $x \in [-1;1]$.
 - b En déduire le signe de h'(x) sur [-1;1].
- 7- Dresser le tableau de variation de h sur IR.
- 8-Donner les équations des demi-tangentes à gauche de 1 et à droite de -1.
- 9- Montrer qu'il existe un unique réel $\alpha \in \left[\sqrt{2}; +\infty\right]/h(\alpha) = 0$ et que $2 < \alpha < 3$
- 10- Tracer (C_n) ; la droite (D_1) et la droite (D_2) dans le repère orthonormé $(O; \vec{i}; \vec{j})$.

<u>4ème partie</u>:

Soit u la restriction de h à l'intervalle

- 1 Montrer que u admet une fonction réciproque u^{-1} définie sur un intervalle J à déterminer.
- 2- Calculer $(u^{-1})'(0)$ en fonction de α .

ZONE PUBLICITAIRE

Correction Problème 5

1ère partie:

$$g(x) = 2 - x^2 \sqrt{x^2 - 1}$$
; pour tous $x \in]-\infty; -1] \cup [1; +\infty[$.

1) pour tout
$$x \in IR$$
 on $a: (x^2 - 2)(x^4 + x^2 + 2) = x^2(x^4 + x^2 + 2) - 2(x^4 + x^2 + 2)$

$$= x^6 + x^4 + 2x^2 - 2x^4 - 2x^2 - 4$$

$$= x^6 - x^4 - 4$$

Donc:
$$(\forall x \in IR)$$
; $x^6 - x^4 - 4 = (x^2 - 2)(x^4 + x^2 + 2)$

2) Etudions le signe de la fonction g sur] $-\infty$; -1] \cup [1; $+\infty$ [; pour cela on doit définir les solutions de l'équation g(x) = 0 puis étudier la monotonie de g sur] $-\infty$; -1] \cup [1; $+\infty$ [.

On a pour tout
$$]-\infty; -1[\cup]1; +\infty[$$
: • $g(x) = 0 \Leftrightarrow 2 - x^2 \sqrt{x^2 - 1} = 0$
 $\Leftrightarrow x^2 \sqrt{x^2 - 1} = 2$
 $\Leftrightarrow x^4 (\sqrt{x^2 - 1})^2 = 4$
 $\Leftrightarrow x^6 - x^4 - 4 = 0$
 $\Leftrightarrow x^2 - 2 = 0$
 $\Leftrightarrow x^2 - 2 = 0$
 $\Leftrightarrow x = -\sqrt{2}$ ou $x = \sqrt{2}$
• $g'(x) = (2 - x^2 \sqrt{x^2 - 1})'$
 $= -2x\sqrt{x^2 - 1} - x^2 \times \frac{2x}{2\sqrt{x^2 - 1}}$
 $= -x\left(2\sqrt{x^2 - 1} + \frac{x^2}{\sqrt{x^2 - 1}}\right)$
 $= -x\left(\frac{2x^2 - 2 + x^2}{\sqrt{x^2 - 1}}\right)$

Or pour x < -1 et x > 1; $3x^2 - 2 > 0$ Donc g'(x) est du signe contraire de x par suite :

•
$$g$$
 est croissante sur $]-\infty;-1[$; et $g(-\sqrt{2})=0$
Alors soit : $x \le -\sqrt{2} \Rightarrow g(x) \le g(-\sqrt{2})$

Alors soit:
$$x \le -\sqrt{2} \Rightarrow g(x) \le g(-\sqrt{2})$$

 $\Rightarrow g(x) \le 0$

www.guessmaths.co <u>E-mail</u>: abdelaliguessouma@gmail.com whatsapp: 0604488896

 $=-x\left(\frac{3x^2-2}{\sqrt{x^2-1}}\right)$

$$-\sqrt{2} \le x < -1 \Rightarrow g(x) \ge g(-\sqrt{2})$$
$$\Rightarrow g(x) \ge 0$$

• g est décroissante sur]1; +
$$\infty$$
[; et $g(\sqrt{2}) = 0$

Alors soit:
$$1 < x \le \sqrt{2} \Rightarrow g(x) \ge g(\sqrt{2})$$

$$\Rightarrow g(x) \ge 0$$

$$x \ge \sqrt{2} \Rightarrow g(x) \le g(\sqrt{2})$$

$$\Rightarrow g(x) \leq 0$$

D'où le tableau de signe de g sur $]-\infty;-1] \cup [1;+\infty[$

Χ	$-\infty$		$-\sqrt{2}$		-1 1		$\sqrt{2}$	1 6	100
9(x)		_	O O	+		+	0	7	

2ème partie:

Pour tout
$$x \in [-1;1]$$
: $f(x) = \frac{2x}{\sqrt{x^2 + 3}} - 1$

1) Pour tout
$$x \in [-1;1]$$
; on $a : f'(x) = \left(\frac{2x}{\sqrt{x^2 + 3}} - 1\right)$

$$= \frac{2\sqrt{x^2 + 3} - 2x \times \frac{2x}{2\sqrt{x^2 + 3}}}{\left(\sqrt{x^2 + 3}\right)^2}$$

$$=\frac{2\left(\sqrt{x^2+3}-\frac{x^2}{\sqrt{x^2+3}}\right)}{(x^2+3)}$$

$$=\frac{2(x^2+3-x^2)}{(x^2+3)\sqrt{x^2+3}}$$

$$=\frac{6}{\left(x^2+3\right)\sqrt{x^2+3}}$$

Donc
$$(\forall x \in [-1;1])$$
; $f'(x) = \frac{6}{(x^2+3)\sqrt{x^2+3}}$

2)
$$(\forall x \in [-1;1])$$
; $f'(x) > 0$

Tableau de variations de f sur [-1;1]

X	-1
f'(x)	+
f(x)	

$$f(1) = \frac{2 \times 1}{\sqrt{1^2 + 3}} - 1 = 0$$
; et comme $f(1)$ est une valeur maximale pour f sur $[-1;1]$;

alors
$$(\forall x \in [-1;1])$$
; $f(x) \le 0$

3ème partie:

Soit In la fonction définie sur par : $\begin{cases} h(x) = \frac{2\sqrt{x^2 - 1}}{x} - x + 1 & \text{si } x \in]-\infty; -1[\ \cup\]1; +\infty[\\ h(x) = \sqrt{x^2 + 3} & \text{si } x \in [-1; 1] \end{cases}$

1) •
$$h(-1) = \sqrt{(-1)^2 + 3} = 2$$
 et $\lim_{x \to -1^-} h(x) = \lim_{x \to -1^-} \frac{2\sqrt{x^2 - 1}}{x} - x + 1 = 2$

Donc $\lim_{x\to -1^-} h(x) = h(-1)$; par suite h est continue à gauche en -1.

•
$$h(1) = \sqrt{1^2 + 3} = 2$$
 et $\lim_{x \to 1^+} h(x) = \lim_{x \to 1^+} \frac{2\sqrt{x^2 - 1}}{x} - x + 1 = 0$

Donc $\lim_{x\to 1^+} h(x) \neq h(1)$; par suite h n'est pas continue à droite en 1.

On $a: x \mapsto \sqrt{x^2 + 3}$ est continue sur IR en particulier à droite en -1 et à gauche en 1 D'où h est continue en -1 et n'est pas continue en 1.

2) Sur
$$]-\infty; -1[\cup]1; +\infty[; h(x) = \frac{2\sqrt{x^2-1}}{x} - x + 1]$$

$$\textit{On a} \ \ \textit{X} \in \left] -\infty; -1 \right[\, \cup \, \right] 1; +\infty \left[\, \Rightarrow \textit{X} \in \, \right] -\infty; -1 \left[\, \cup \, \right] 1; +\infty \left[\, \Rightarrow \textit{X} \in \, \right] -\infty; -1 \left[\, \cup \, \right] 1; +\infty \left[\, \Rightarrow \textit{X} \in \, \right] -\infty; -1 \left[\, \cup \, \right] 1; +\infty \left[\, \Rightarrow \textit{X} \in \, \right] -\infty; -1 \left[\, \cup \, \right] 1; +\infty \left[\, \Rightarrow \textit{X} \in \, \right] -\infty; -1 \left[\, \cup \, \right] 1; +\infty \left[\, \Rightarrow \textit{X} \in \, \right] -\infty; -1 \left[\, \cup \, \right] 1; +\infty \left[\, \Rightarrow \textit{X} \in \, \right] -\infty; -1 \left[\, \cup \, \right] 1; +\infty \left[\, \Rightarrow \textit{X} \in \, \right] -\infty; -1 \left[\, \cup \, \right] 1; +\infty \left[\, \Rightarrow \textit{X} \in \, \right] -\infty; -1 \left[\, \cup \, \right] 1; +\infty \left[\, \Rightarrow \textit{X} \in \, \right] -\infty; -1 \left[\, \cup \, \right] 1; +\infty \left[\, \Rightarrow \textit{X} \in \, \right] -\infty; -1 \left[\, \cup \, \right] 1; +\infty \left[\, \Rightarrow \textit{X} \in \, \right] -\infty; -1 \left[\, \cup \, \right] 1; +\infty \left[\, \Rightarrow \textit{X} \in \, \right] -\infty; -1 \left[\, \cup \, \right] 1; +\infty \left[\, \Rightarrow \textit{X} \in \, \right] -\infty; -1 \left[\, \cup \, \right] 1; +\infty \left[\, \Rightarrow \textit{X} \in \, \right] -\infty; -1 \left[\, \cup \, \right] 1; +\infty \left[\, \Rightarrow \textit{X} \in \, \right] -\infty; -1 \left[\, \cup \, \right] 1; +\infty \left[\, \Rightarrow \textit{X} \in \, \right] -\infty; -1 \left[\, \cup \, \right] 1; +\infty \left[\, \Rightarrow \textit{X} \in \, \right] -\infty; -1 \left[\, \cup \, \right] 1; +\infty \left[\, \Rightarrow \textit{X} \in \, \right] -\infty; -1 \left[\, \cup \, \right] 1; +\infty \left[\, \Rightarrow \textit{X} \in \, \right] -\infty; -1 \left[\, \cup \, \right] 1; +\infty \left[\, \Rightarrow \textit{X} \in \, \right] -\infty; -1 \left[\, \cup \, \right] 1; +\infty \left[\, \Rightarrow \textit{X} \in \, \right] -\infty; -1 \left[\, \cup \, \right] 1; +\infty \left[\, \Rightarrow \textit{X} \in \, \right] -\infty; -1 \left[\, \cup \, \right] 1; +\infty \left[\, \Rightarrow \textit{X} \in \, \right] -\infty; -1 \left[\, \cup \, \right] 1; +\infty \left[\, \Rightarrow \textit{X} \in \, \right] -\infty; -1 \left[\, \cup \, \right] 1; +\infty \left[\, \Rightarrow \textit{X} \in \, \right] -\infty; -1 \left[\, \cup \, \right] 1; +\infty \left[\, \Rightarrow \textit{X} \in \, \right] -\infty; -1 \left[\, \cup \, \right] 1; +\infty \left[\, \Rightarrow \textit{X} \in \, \right] -\infty; -1 \left[\, \cup \, \right] 1; +\infty \left[\, \Rightarrow \textit{X} \in \, \right] -\infty; -1 \left[\, \cup \, \right] 1; +\infty \left[\, \Rightarrow \textit{X} \in \, \right] -\infty; -1 \left[\, \cup \, \right] 1; +\infty \left[\, \Rightarrow \textit{X} \in \, \right] -\infty; -1 \left[\, \cup \, \right] 1; +\infty \left[\, \Rightarrow \textit{X} \in \, \right] -\infty; -1 \left[\, \cup \, \right] 1; +\infty \left[\, \Rightarrow \textit{X} \in \, \right] -\infty; -1 \left[\, \cup \, \right] 1; +\infty \left[\, \Rightarrow \textit{X} \in \, \right] -\infty; -1 \left[\, \cup \, \right] 1; +\infty \left[\, \Rightarrow \textit{X} \in \, \right] -\infty; -1 \left[\, \cup \, \right] 1; +\infty \left[\, \Rightarrow \textit{X} \in \, \right] -\infty; -1 \left[\, \cup \, \right] 1; +\infty \left[\, \Rightarrow \textit{X} \in \, \right] -\infty; -1 \left[\, \cup \, \right] 1; +\infty \left[\, \Rightarrow \textit{X} \in \, \right] -\infty; -1 \left[\, \cup \, \right] 1; +\infty \left[\, \Rightarrow \textit{X} \in \, \right] -\infty; -1 \left[\, \cup \, \right] 1; +\infty \left[\, \Rightarrow \textit{X} \in \, \right] -\infty; -1 \left[\, \cup \, \right] 1; +\infty \left[\, \Rightarrow \textit{X} \in \, \right] -\infty; -1 \left[\, \cup \, \right] 1; +\infty \left[\, \Rightarrow \textit{X} \in \, \right] -\infty; -1 \left[\, \cup \, \right] 1; +\infty \left[\, \Rightarrow \textit{X} \in \, \right] -\infty; -1 \left[\, \cup \, \right] 1; +\infty \left[\, \Rightarrow \textit{X} \in \, \right] -\infty; -1 \left[\, \cup \, \right] 1; +\infty \left[\, \Rightarrow \textit{X} \in \, \right] -\infty; -1 \left[\, \cup \, \right] 1; +\infty \left[\, \Rightarrow \textit{X} \in \, \right$$

$$Et h(2 \times 0 - x) + h(x) = \frac{2\sqrt{(-x)^2 - 1}}{(-x)} - (-x) + 1 + \frac{2\sqrt{x^2 - 1}}{x} - x + 1$$

$$= -\frac{2\sqrt{x^2 - 1}}{x} + x + 1 + \frac{2\sqrt{x^2 - 1}}{x} - x + 1$$

$$= 2 \times 1$$

$$\mathcal{D}onc: \begin{cases} x \in]-\infty; -1[\ \cup\]1; +\infty[\ \Rightarrow x \in\]-\infty; -1[\ \cup\]1; +\infty[\\ h(2\times D-x)+h(x)=2\times 1 \end{cases}; d'où \text{ la courbe}(\mathcal{C}_h) \text{ admet un}$$

centre de symétrie I(0;1) sur l'intervalle $]-\infty;-1[\cup]1;+\infty[$

3) a)
$$\dagger$$
 On a: $\lim_{x \to +\infty} h(x) = \lim_{x \to +\infty} \frac{2\sqrt{x^2 - 1}}{x} - x + 1$

† On a:
$$\lim_{x \to +\infty} h(x) - (-x + 3) = \lim_{x \to +\infty} \frac{2\sqrt{x^2 - 1}}{x} - x + 1 + x - 3 = 0$$

Donc la droite (\mathcal{P}_1) d'équation y=-x+3 est une asymptote oblique à la courbe (\mathcal{C}_h) au voisinage de $+\infty$

- b) Soit $M(x; -x + 3) \in \mathcal{D}_1$ alors son symétrique par rapport à I(0; 1) est $M'(-x; x 1) \in \mathcal{D}_2$; donc \mathcal{D}_1 et \mathcal{D}_2 sont symétriques par rapport à I(0; 1) et comme I(0; 1) est un centre de symétrie de la courbe (\mathcal{G}_n) sur l'intervalle $]-\infty; -1[\,\cup\,]1; +\infty[\,$; alors on déduit que la droite $\mathcal{D}_2: y = -x 1$ est une asymptote oblique à la courbe (\mathcal{G}_n) au voisinage de $-\infty$
- 4) Etudions la dérivabilité de h en 1 à droite

On a:
$$\lim_{x \to 1^{+}} \frac{h(x) - h(1)}{x - 1} = \lim_{x \to 1^{+}} \frac{2\sqrt{x^{2} - 1}}{x} - x + 1$$

$$= \lim_{x \to 1^{+}} \frac{2\sqrt{x^{2} - 1}}{x - 1} - (x - 1)$$

$$= \lim_{x \to 1^{+}} \frac{2\sqrt{x^{2} - 1}}{x (x - 1)} - 1$$

$$= \lim_{x \to 1^{+}} \frac{2}{x} \times \frac{\sqrt{x^{2} - 1}}{(x - 1)} - 1$$

$$= \lim_{x \to 1^{+}} \frac{2}{x} \times \sqrt{\frac{(x - 1)(x + 1)}{(x - 1)^{2}}} - 1$$

$$= \lim_{x \to 1^{+}} \frac{2}{x} \times \sqrt{\frac{(x + 1)}{(x - 1)}} - 1 = +\infty$$

ZONE PUBLICITAIRE

Donc h n'est pas dérivable à droite en 1 et la courbe (C_n) admet une demi-tangente dirigée vers le haut à droite du point d'abscisse 1.

5) a) pour tout
$$x \in]-\infty; -1[\cup]1; +\infty[$$
; on $a : h'(x) = \left(\frac{2\sqrt{x^2 - 1}}{x} - x + 1\right)'$

$$= \frac{2 \times \frac{2x}{2\sqrt{x^2 - 1}} \times x - 2\sqrt{x^2 - 1}}{x^2} - 1$$

$$= \frac{2x^2 - 2(x^2 - 1)}{x^2\sqrt{x^2 - 1}} - 1$$

$$= \frac{2 - x^2\sqrt{x^2 - 1}}{x^2\sqrt{x^2 - 1}}$$

$$= \frac{2(x)}{x^2\sqrt{x^2 - 1}}$$

$$= \frac{2(x)}{x^2\sqrt{x^2 - 1}}$$

b) Donc h'(x) est du même signe que g(x) sur $]-\infty;-1[\cup]1;+\infty[$.

D'après la partie 1 •
$$g(x) \le 0$$
 sur $]-\infty; -\sqrt{2}] \cup [\sqrt{2}; +\infty[$

Donc $h'(x) \le 0$ sur $]-\infty; -\sqrt{2}]$ et sur $[\sqrt{2}; +\infty[$

•
$$g(x) \ge 0$$
 sur $\left[-\sqrt{2}; -1\right[\cup]1; \sqrt{2}\right]$
Donc $h'(x) \ge 0$ sur $\left[-\sqrt{2}; -1\right[et sur]1; \sqrt{2}\right]$

(6) a) pour tout
$$x \in [-1;1]$$
; on $a : h'(x) = (\sqrt{x^2 + 3})'$

$$= \frac{2x}{2\sqrt{x^2 + 3}}$$

$$= \frac{x}{\sqrt{x^2 + 3}}$$

- b) Donc h'(x) est du même signe que x;
 - $h'(x) \le 0$ sur [-1;0]
 - $h'(x) \ge 0$ sur [0;1]
- 7) Le tableau de variation de h sur IR.

X	$-\infty$	$-\sqrt{2}$	-1	D	1		$\sqrt{2}$		$+\infty$
h'(x)	_	ф	+ -	- φ	+	+	ф	_	
h(x)	+∞	*1	***	\	3		y 1		

$$= \frac{1}{\sqrt{1^2 + 3}}(x - 1) + 2$$

$$= \frac{1}{2}(x - 1) + 2$$

$$= \frac{1}{2}x + \frac{3}{2}$$

• l'équation de la demi-tangente à droite de -1 est : $y_d = h'_d(-1)(x+1) + h(-1)$

$$= \frac{-1}{\sqrt{(-1)^2 + 3}} (x+1) + 2$$
$$= -\frac{1}{2} (x+1) + 2$$
$$= -\frac{1}{2} x + \frac{3}{2}$$

9) h est continue strictement décroissante sur $\left[\sqrt{2};+\infty\right[; h\left(\left[\sqrt{2};+\infty\right[\right)=\right]-\infty;1]$ et

$$D \in]-\infty;1]$$
 donc il existe un unique réel $\alpha \in [\sqrt{2};+\infty[/h(\alpha)=0.$

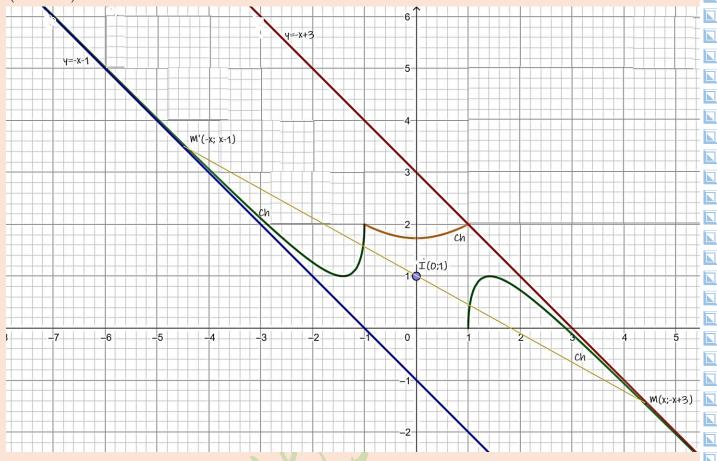
On a:
$$h(2) = \sqrt{3} - 1 > 0$$
 et $h(3) = \frac{4}{3}\sqrt{2} - 2 < 0$

Donc:
$$h(3) < D < h(2) \Rightarrow h(3) < h(\alpha) < h(2)$$

$$\Rightarrow$$
 2 < α < 3 (Carh est strictement décroissante sur $\sqrt{2}$; + ∞)

ZONE PUBLICITAIRE

10) Construction $de(\mathcal{C}_n)$; la droite (\mathcal{D}_1) et la droite (\mathcal{D}_2) dans le repère orthonormé $(\mathcal{O};\vec{i};\vec{j}).$



4ème partie:

Soit u la restriction de h à l'intervalle $\sqrt{2}$; $+\infty$

1 - u est continue et strictement décroissante sur $\left[\sqrt{2};+\infty\right[$ donc elle admet une fonction $\left[\sqrt{2};+\infty\right]$ réciproque u^{-1} définie sur un intervalle J.

$$\mathcal{J}=\textit{N}\left(\left[\sqrt{2};+\infty\right[\right)=\left]-\infty;1\right]$$

2- On
$$\alpha$$
: $u(\alpha) = h(\alpha) = 0 \Rightarrow \alpha = u^{-1}(0)$ et $u'(\alpha) = h'(\alpha) = \frac{2 - \alpha^2 \sqrt{\alpha^2 - 1}}{\alpha^2 \sqrt{\alpha^2 - 1}}$

D'où
$$\alpha'(\alpha) = \frac{2}{\alpha^2 \sqrt{\alpha^2 - 1}} - 1$$
 et $h(\alpha) = 0 \Rightarrow \frac{2\sqrt{\alpha^2 - 1}}{\alpha} - \alpha + 1 = 0$

$$\Rightarrow \sqrt{\alpha^2 - 1} = \frac{\alpha (\alpha + 1)}{2}$$

Donc:
$$u'(\alpha) = \frac{2}{\alpha^2 \times \frac{\alpha(\alpha+1)}{2}} - 1$$

$$= \frac{4}{\alpha^4 + \alpha^3} - 1$$

$$= \frac{4 - \alpha^4 - \alpha^3}{\alpha^4 + \alpha^3} \qquad e + 2 < \alpha < 3 \Rightarrow \begin{cases} 16 < \alpha^4 < 81 \\ 8 < \alpha^3 < 27 \end{cases}$$

$$\Rightarrow 24 < \alpha^4 + \alpha^3 < 109$$

$$\Rightarrow -109 < -\alpha^4 - \alpha^3 < -24$$

$$\Rightarrow -105 < 4 - \alpha^4 - \alpha^3 < -20$$

$$u'(\alpha) = u'(u^{1}(0)) \neq 0$$

 $\mathcal{E} + (u^{-1})'(0) = \frac{\alpha^{4} + \alpha^{3}}{4 - \alpha^{4} - \alpha^{3}}.$

ZONE PUBLICITAIRE