

Exercice n°3 sur les suites

Exercice 3: (avec solution)

On considère la suite (U_n) définie par :

$$\begin{cases} U_0 = \frac{1}{2} \\ U_{n+1} = \sqrt{2 + \frac{U_n^2}{2}} \quad (\forall n \in IN) \end{cases}$$

1/Montrer par récurrence que : $(\forall n \in IN)$; $0 < U_n < 1$

2/ Comparer U_n^2 et U_{n+1}^2 ; déduire la monotonie de (U_n) .

3/ On passe: $V_n = U_n^2 - 4 \quad (\forall n \in IN)$

a/Montrer que (V_n) est une suite géométrique et déterminer sa raison et son terme initiale.

b/Donner V_n et U_n en fonction de n.

c/On pose $S_n = U_0^2 + U_1^2 + U_2^2 + \dots + U_n^2$ pour tout $n \in IN$ Calculer S_n en fonction de n tel que :

Correction Exercice 5:

$$\begin{cases} U_0 = \frac{1}{2} \\ U_{n+1} = \sqrt{2 + \frac{U_n^2}{2}} \left(\forall n \in IN \right) \end{cases}$$

 $1/Soit (I)((\forall n \in IN) 0 < U_n < 2)$

Pour n = 0 on $a : 0 < U_0 = \frac{1}{2} < 2 Donc (I) est vérifiée.$

Pour $n \in IN$ supposons que (I) est vérifiée pour (n+1).

On
$$a: U_{n+1} = \sqrt{2 + \frac{U_n^2}{2}} > 0$$
.

Calculons $U_{n+1} - 2: U_{n+1} - 2 = \sqrt{2 + \frac{U_n^2}{2}} - 2$ (on multiplie par la partie conjugué)

$$\Rightarrow = \frac{\left(\sqrt{2 + \frac{U_n^2}{2}}\right)^2 - 4}{\sqrt{2 + \frac{U_n^2}{2}} + 2} = \frac{2 + \frac{U_n^2}{2} - 4}{\sqrt{2 + \frac{U_n^2}{2}} + 2}$$

$$\Rightarrow = \frac{U_n^2 - 4}{2\left(\sqrt{2 + \frac{U_n^2}{2}} + 2\right)} = \frac{(U_n - 2)(U_n + 2)}{2\left(\sqrt{2 + \frac{U_n^2}{2}} + 2\right)} \text{ (or } (U_n - 2) < 0)$$

$$\Rightarrow U_{n+1} - 2 < 0$$

$$\Rightarrow 0 < U_{n+1} < 2$$

1. Conclusion: On a montré par récurrence que : $(\forall n \in IN) 0 < U_n < 2$

2/ Calculons $\left(U_{n+1}^2-U_n^2\right)$:

<u>www.guessmaths.co</u> <u>E-mail</u>: <u>abdelaliguessouma@gmail.com</u> <u>whatsapp</u>: 0604488896

$$U_{n+1}^{2} - U_{n}^{2} = \left(\sqrt{2 + \frac{U_{n}^{2}}{2}}\right)^{2} - U_{n}^{2}$$

$$\Rightarrow 2 + \frac{U_{n}^{2}}{2} - U_{n}^{2} = 2 - \frac{U_{n}^{2}}{2}$$

$$\Rightarrow \frac{4 - U_{n}^{2}}{2} = \frac{1}{2}(2 - U_{n})(2 + U_{n})$$

$$\Rightarrow U_{n+1}^{2} - U_{n}^{2} > 0\left(\operatorname{Car}(2 - U_{n}) < 0 \text{ et } (2 + U_{n} > 0)\right)$$

$$Donc: (\forall n \in IN)U_{n+1}^2 > U_n^2 \text{ et puisque } (\forall n \in IN)U_n > 0$$

On a: $(\forall n \in IN)U_{n+1} > U_n$ d'où: (U_n) est une suite croissante.

$$3/(\forall n \in IN)V_n = U_n^2 - 4$$

a/calculons
$$V_{n+1}$$
:

$$V_{n+1} = U_{n+1}^2 - 4$$

 $\Rightarrow V_{n+1} = 2 + \frac{U_n^2}{2} - 4 \Rightarrow V_{n+1} = \frac{U_n^2}{2} - 2$

$$\Longrightarrow V_{n+1} = \frac{1}{2} \left(U_n^2 - 4 \right) \Longrightarrow V_{n+1} = \frac{1}{2} V_n$$

<u>Conclusion</u>: (V_n) est une suite géométrique de raison $q = \frac{1}{2}$ et de premier Terme $V_0 = -\frac{15}{4}$

$$b \land (\forall n \in IN)V_n = V_0 \times q^n$$

$$\Rightarrow (\forall n \in IN)V_n = -\frac{15}{4} \times \frac{1}{2^n}$$

$$\Rightarrow (\forall n \in IN)V_n = -\frac{15}{2^{n+2}}$$

On a:
$$V_n = U_n^2 - 4(\forall n \in IN)$$

$$\Rightarrow U_n = \sqrt{4 + V_n} \left(\forall n \in IN \right)$$

$$\Rightarrow U_n = \sqrt{4 + \frac{15}{2^{n+2}}} \left(\forall n \in IN \right)$$

$$c / Soit S_n = U_0^2 + U_1^2 + \dots + U_n^2$$

On
$$a: V_n = U_n^2 - 4 \implies U_n^2 = V_n + 4$$
 Donc: $S_n = V_0 + V_1 + ... + V_n + 4 \times (n+1)$

$$\Rightarrow S_n = (V_0 + V_1 + \dots + V_n) + 4 \times (n+1)$$

www.guessmaths.co <u>E-mail</u>: abdelaliguessouma@gmail.com whatsapp: 0604488896

$$\Rightarrow S_n = -\frac{15}{4} \left(\frac{1 - \left(\frac{1}{2}\right)^n}{1 - \frac{1}{2}} \right) + 4 \times (n+1)$$

$$\Rightarrow S_n = -\frac{15}{4} \times \frac{1 - \left(\frac{1}{2}\right)^n}{\frac{1}{2}} + 4 \times (n+1)$$

$$\Rightarrow S_n = -\frac{15}{4} \times \left(1 - \frac{1}{2^n}\right) + 4 \times (n+1)$$

$$\Rightarrow S_n = \frac{15(1 - 2^n)}{2^{n+1}} + 4 \times (n+1)$$

whatsapp: 0604488896