EXERCICE 1

PARTIE A

Soit g la fonction définie sur [0;+∞[par

$$g(x) = 1 - x - e^{-2x}$$

- 1- Etudier les variations de g sur $[0; +\infty[$
- 2- Déterminer la limite de g en $+\infty$ (on ne demande pas de construire la courbe représentative de g
- 3- Démontrer qu'il existe un unique réel α strictement positif tel que $g(\alpha) = 0$; et montrer que :

$$\frac{\ln 2}{2} < \alpha < 1$$

- 4- Etudier le signe de g sur $[0; +\infty]$
- 5- Justifier que : $0.79 \le \alpha \le 0.80$.

PARTIE B

Soit f la fonction définie sur]0; +
$$\infty$$
[par : $f(x) = x \left(e^{\frac{2}{x}} - 1\right)^{\frac{1}{2}}$

Et C_f sa courbe représentative dans un $\,$ repère orthonormé $\left(O; ec{i}; ec{j}
ight)$

1- <u>Etude des variations de f</u>

Justifier que f est dérivable sur $]0;+\infty[$ et montrer que ; pour tout réel x strictement positif :

$$f'(x) = \left(e^{\frac{2}{x}} - 1\right)^{-\frac{1}{2}} e^{\frac{2}{x}} g\left(\frac{1}{x}\right)$$

- b) En déduire les variations de f sur]0;+∞[
- 2- <u>Etude de la limite de f en 0</u>.
 - a) Montrer que: pour tout réel x strictement positif : $\ln[f(x)] = \frac{1}{x}(1 + x \ln x) + \frac{1}{2}\ln\left(1 e^{-\frac{2}{x}}\right)$
 - b) En déduire la limite de f en 0
 - c) Interpréter graphiquement le résultat
- 4) Etude de la limite de f en +∞
 - a) Etudier la limite de $\frac{e^{2u}-1}{u^2}$ quand u tend vers 0
 - b) Vérifier que pour tout réel x strictement positif, $f(x) = \left(\frac{e^{\frac{2}{x}} 1}{\left(\frac{1}{x}\right)^2}\right)^{\frac{1}{2}}$
 - c) En déduire la limite de f en $+\infty$
- 5) <u>Représentation graphique de f</u>

Tracer la courbe C_f dans le repère $(O; \vec{i}; \vec{j})$.

EXERCICE 2

Soit f la fonction définie sur $[0; +\infty[$ par : $f(x) = 5e^{-\frac{\hat{x}}{\sqrt{5}}}\cos x$

- 1) a) Démontrer que: $\forall x \in [0; +\infty[, |f(x)| \le 5e^{-\frac{\lambda}{\sqrt{3}}}]$ b) En déduire la limite de f en $+\infty$.
- 2) Démontrer que f est dérivable sur $[0; +\infty[$ et que : $\forall x \in [0; +\infty[$, $f'(x) = -\frac{10}{\sqrt{3}}e^{-\frac{x}{\sqrt{3}}}\cos(x-\frac{\pi}{2})$
- 3) Déterminer le signe de f'(x) sur [0;2]
- 4) Démontrer que : $\forall x \in [0; 2\pi]$, $f(x+2\pi) = e^{-\frac{2\pi}{\sqrt{3}}} f(x)$
- 5) Dresser le tableau de variation de f sur l'intervalle $[0;4\pi]$
- 6) Tracer (C) la courbe représentative e de f sur l'intervalle $\left[0;4\pi\right]$ dans un repère orthonormé $\left(0;\vec{i};\vec{j}\right)$ (unité graphique 1 cm).
- 7) Soit f_1 et f_2 les fonctions définies sur $\left[0;+\infty\right[$ par : $f_1(x)=5e^{-\frac{x}{\sqrt{3}}}$ et $f_2(x)=-5e^{\frac{x}{\sqrt{3}}}$ $f_2(x)=-5e^3$ On note (C_1) et (C_2) leurs représentations graphiques respectives dans le repère $(O; \vec{i}; \vec{j})$
 - a) Déterminer les points d'intersection de (C) et (C_1) et démontrer qu'en ces points, les courbes (C)et (C_1) ont une tangente commune.
 - b) Déterminer les points d'intersection de (C) et (C_2) et démontrer qu'en ces points, les courbes (C) et (C_2) ont une tangente commune
 - c) Tracer sur le graphique précèdent les courbes (C_1) et (C_2)

EXERCICE 3

Dans chaque cas, justifier que f admet des primitives sur IR; et déterminer une primitive F de f sur IR.

1)
$$f(x) = 2e^x - e^{2x}$$
. 2) $f(x) = e^{2-3x}$

2)
$$f(x) = e^{2-3x}$$

$$3) \quad f\left(x\right) = xe^{x^2}$$

4)
$$f(x) = (x+1)e^{x(x+2)}$$

$$5) \quad f(x) = (\sin x)e^{\cos x}$$

5)
$$f(x) = (\sin x)e^{\cos x}$$
. 6) $f(x) = \frac{e^x}{(e^x + 1)^2}$

7)
$$f(x) = \frac{e^{2x}}{(e^{2x} + 1)^3}$$

8)
$$f(x) = (1 - 2\sin^2 x)e^{-\sin 2x}$$

II- Déterminer, dans chaque cas, la primitive F de la fonction f sur I telle que : $F(x_0) = y_0$

1)
$$f(x) = e^{3x-1}$$
: $I = IR$, $x_o = 1$ et $y_o = 2e^2$

2)
$$f(x) = \frac{1}{\cos^2 x} e^{\tan x}$$
; $I = \left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$,

$$x_o = \frac{\pi}{4} \quad et \ \ y_o = 0$$

3)
$$f(x) = \frac{e^{\frac{1}{x}}}{x^2}$$
; $I =]-\infty; 0[$, $x_o = -1$ et $y_o = 0$

4)
$$f(x) = (1 - 2\cos 2x)e^{x + \cos(2x + \frac{\pi}{2})} : I = IR$$
,

$$x_o = \frac{\pi}{2} \quad et \ \ y_o = e^{\frac{\pi}{2}}$$

EXERCICE 3

PARTIE A

Soit g la fonction définie sur R par : $g(x) = 2e^x - x - 2$

- 1. Calculer $\lim_{x \to -\infty} g(x)$ et $\lim_{x \to +\infty} g(x)$
- 2. Etudier le sens de variation de g et puis dresser son tableau de variation
- 3. Montrer que l'équation g(x) = 0 admet exactement deux solutions réelles 0 et α telle que $-1, 6 \le \alpha \le -1, 5$
- 4. En déduire le signe de g

PARIE B

Soit f la fonction définie sur R par : $f(x) = e^{2x} - (x+1)e^x$

- 1. Calculer $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to +\infty} f(x)$
- 2. Calculer f'(x) et montrer que f'(x) et g(x) ont le même signe Etudier les variations de f.
- 3. Montrer que : $f(\alpha) = \frac{-(\alpha^2 + 2\alpha)}{4}$

En déduire un encadrement de $f(\alpha)$

- 4. Dresser le tableau de variation de f.
- 5. Tracer la courbe C de f dans un repère orthonormé $\left(0;\vec{i};\vec{j}
 ight)$
- 6. Soit m un réel négatif
 - a) Calculer $\int_{m}^{0} xe^{x} dx$
 - b) Calculer alors $\int_{0}^{0} f(x)dx$
 - c) Déterminer $\lim_{m \to -\infty} \int_{m}^{0} f(x) dx$