Correction de l'examen national 2019 dersien normal PC-EXT sypet de maths Exercice 1 (géométrie dans l'espece). A(1,-1,-1); B(0;-2;1) et C(1,-2,0) 1) a) $\overrightarrow{AB} \left(\begin{array}{c} -1 \\ -1 \\ 2 \end{array} \right)$ AC (A) Olonc: ABNAC = -1 -1 2 - 2 1 5+ -1 -1 12 $= (-1+2)\vec{i} - (-1)\vec{j} + (1)\vec{k}$ ABNAC= ブナナナゼ 6) Comme le vecteur (ABAB) est un vecteur normal an Plan (ABC); d'on: Sof M (21413) E(ARC) (D) AM. (ARNAC)=0 CO X-1+1+1+3+1=0 Donc l'equation x+y+3+1=0 est une équation Contisionne du ptom (ABC): 2 methode On a (ABAAE) est normal au ploubes donc Elequation du plan (ABE) d'ecnit: x+y+3+d=0 et d'est déterminer par l'appartenance de l'un despoints A; Bou Cau plan (APX). prevons le point A; on obtient:

1-1-1-d=0 dev d=1 et paraite: 2443+1=0 est une équation cortesieune du plan (ABC). 2) (5): 22+y2-4x+2y-2z+1=0 On a M(x;y; 3) E(S) (=) 22+y+3-4x+2y-23+1=0 $(2^{2}+1)+(y+2y+1)+(3-23+1)=5$ $(2-2)^{2}+(y+1)^{2}+(3-1)^{2}=5$ (2) $V(x-2)^{2}(y+1)^{2}+(3-1)^{2}=V5$ Douc (S) est le sphère de centre 2(2;-1;1) et de voyon R=1.5. 3) a) Ona. $d(R_i(ABC)) = \frac{\chi_2 + \chi_2 + 3\alpha + 1}{\|AB \wedge AC\|}$ = 12-1+1+1 V12+12 $= \frac{3}{\sqrt{3}} = \sqrt{3}.$ b) Conne d(2;(432)) L V5=R alors le plan (ABR) Coupe la sphére selon un cercle (1).

3) H(h) et P(p) tel que: p=a-c R(0; = 7); on a: M'(2') = R(M(2)) $(=) (2'-0) = (2-0)e^{i\frac{\pi}{3}}$ $(=) 2' = 2(cor(-\frac{\pi}{3}) + i sin(-\frac{\pi}{3}))$

(=)
$$2' = 2(\frac{1}{2} - i\frac{\sqrt{5}}{2})$$
 $= \frac{1}{2}(1 - i\sqrt{3})2$
 $= \frac{1}{2}a^{2}$

Donc $M(2') = R(M(2)) \in \mathcal{I} = \frac{1}{2}a^{2}$

4) a) $H(k) = R(B) \in \mathcal{I} = \frac{1}{2}ab$

(=) $k = \frac{1}{2}(1 - i\sqrt{3})(2 + 2i)$
 $= (1 - i\sqrt{3})(4 + i)$
 $= i(4 - i\sqrt{3})(4 + i$

2 (Data) (to)	5
Exercice 3 (Probabilité)	I (R) (R)
	MRRM
On tire simultanement Trois	boules; donc: Carda= Go=12
1)) A « Obtemir-3 bales Vertes	>> 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
alors Cord A= C3=1 d1	m = [P(A) = 1]
-) B« Obteur 3 boutes de v	neme anteur>>
On two do . 2 houles	Vertes ou 3 boules Rouges; donc
$O \cap C = C \cap C$	
Gord B = $C_3 + C_6 = 1 + 2$	0=21
$don : P(B) = \frac{21}{120} = \frac{7}{4}$	$P(B) = \frac{7}{40}$
1.20	
2) C « Obtenir au moins 2	boules de même couleur >>
On travaillers, avec l'e	reprenent contraire:
ON VICENEERS (LEES, C.	d. a.s. a. Co. John V >7
Ca tiver une boute de	21 01 2 2 1
olar Cord C= 3+0	$\frac{2}{3} + \frac{2}{3} = \frac{3}{3} + \frac{6}{3} + \frac{1}{3} = \frac{1}{3}$
Joi: P(C)=10=1	
120 1	2
par suite: P(c)=1-	$-p(\bar{c}) = 1 - \frac{1}{10} = \frac{11}{10}$
fell race - , (c) -	12 12
$P(c) = \frac{1}{4}$	4
TC)= 1	2

b) powr tout
$$x \in Joi+\infty[i]$$
 on a:
$$f(x) = (x + \frac{1}{2} - \ln x + \frac{1}{2}(\ln x)^{2})^{2}$$

$$= 1 - \frac{1}{2} + 2x \frac{1}{2} \times \ln x$$

$$= 1 - \frac{1}{2} + \frac{\ln x}{2}$$

$$= 1 - \frac{1}{x} + \frac{\ln x}{x}$$

$$= \frac{x - 1 + \ln x}{x}$$

c) d'ajeres la guestion 3) a) on conclut que: trejoij; f(n) (0 et tréji+0[if(n)>0]
d'où le tableau-de variation de fort le survant

x	0 1	+00
f(x)	- 9 +	$f(1) = \frac{3}{2}$
e(x)		7
1 (h)	3	
	1 2	

4) Pour tout
$$x \in]o; +\infty[; ona:$$

$$f''(x) = (1 - \frac{1}{x} + \frac{\ln x}{x})$$

$$= \frac{1}{x^2} + \frac{2x\frac{1}{x} - \ln x}{x^2}$$

$$= \frac{1 + 1 - \ln x}{x^2}$$

$$= \frac{2 - \ln x}{x^2}$$

b) on a (Yx6]o;+o[); f'(x)= 2-lux 3
donc f'islannule et change de ligne en xo polution de l'équotion 2-lux=0
donc 2=e2; par suite (c) admet-un point d'inflexions A(e2; f(e2)).
$f(e^2) = e^2 + \frac{1}{2} - \ln(e^2) + \frac{1}{2} \ln(e^2)$
$= e^{2} + \frac{1}{2} \times 4$ $= e^{2} + \frac{1}{2}$
$=2e^{2}+1$ 2 donc: $A(e^{2}, 2e^{2}+1)$.
5) a) on a; pour tout xclei+xcl:
$f(x) - x = \frac{1}{2} - \ln x + \frac{1}{2} (\ln x)^{2}$ $= \frac{1}{2} ((\ln x)^{2} - 2 \ln x + 1)$ $= \frac{1}{2} (\ln x - 1)^{2}$
On en déduire que pour tont 2 E Joitos [;
Par suite (C) est au-densus de le droite (D) sur
l'intervalle Jajital.
Scanned with CamScanner

Scanned with CamScanner

$$= e - 2 \left[x \ln x - x \right]^{2} \quad \text{(car Hertune purmitive de h)}.$$

$$= e - 2 \left(e - e + 1 \right)$$

$$= e - 2$$

$$= e$$

Scanned with CamScanner

donc n: l=limun alors lost Mution de l'équotion f(z)=x. On soit d'après la première partie que f(x)=x a pour solution e; donc lim $u_n=e$.