Vecteur normal à une droite Droite définie par un point et un vecteur normal

<u>Exercice 1</u>

Déterminer un vecteur normal à la droite (Δ) dans chacun des cas suivants :

$$a.(\Delta): x-5y+2=0$$

b.
$$(\Delta): 2x + 5y - 1 = 0$$

c.
$$(\Delta): 2x + \sqrt{2}y + 5 = 0$$

d.
$$(\Delta): 2x + \sqrt{2}y + 5 = 0$$

Exercice 2

Déterminer une équation de la droite (D) passant par le point A et admettant n pour vecteur normal dans les cas suivants:

a.
$$A(-2;1)$$
 et $\vec{n}(2;3)$;

b.
$$A(4;-1)$$
 et $\vec{n}(3;-3)$;

c.
$$A(1;1)$$
 et $\vec{n}(1;\sqrt{2})$;

d.
$$A(0;-1)$$
 et $\vec{n}(0;3)$;

Orthogonalité de deux droites

Exercice 3

(D) et (D') sont deux droites du plan.

Parmi les cas suivants, déterminer ceux pour lesquels les droites (D) et (D') sont perpendiculaires.

$$a.(D): x+3y-\frac{5}{2}=0; (D'):-6x+2y-1=0.$$

b. (D):
$$\frac{1}{2}x - \sqrt{2}y - 3 = 0$$
; (D'): $2\sqrt{2}x + y = 0$

c. (D):
$$5x - y + 7 = 0$$
; (D'): $3x - \frac{3}{5}y + 2 = 0$.

c. (D):
$$5x - y + 7 = 0$$
; (D'): $3x - \frac{3}{5}y + 2 = 0$.
d. (D):
$$\begin{cases} x = 1 + 2k \\ y = 1 - k \end{cases}$$
; (D'):
$$\begin{cases} x = 2k \\ y = 1 + 4k \end{cases}$$
; $k \in \mathbb{R}$

Exercice 4

Déterminer une équation de la droite passant par A et perpendiculaire à la droite (Δ) dans chacun des cas suivants:

a.
$$A(1;5)$$
 et $(\Delta): -x + y - 5 = 0$.

b.
$$A(\sqrt{3};\sqrt{2})$$
 et (Δ) : $x\sqrt{2} + y\sqrt{3} - 1 = 0$

c.
$$A(0;-1)$$
 et (A) : $y = 5x-2$

Exercice 5

Soit A, B et C trois points du plan tels que A(2;-3).

Déterminer une équation de la droite (D) passant par

A et perpendiculaire à la droite (BC) dans chacun des cas suivants et construire la représentation correspondante

a.
$$B(1;-1)$$
 et $C(3;2)$

a.
$$B(1;-1)$$
 et $C(3;2)$ b. $B(\frac{1}{2};1)$ et $C(1;\frac{1}{2})$ c. $B(3;0)$ et $C(4;3)$

c.
$$B(3;0)$$
 et $C(4;3)$

Distance d'un point à une droite

Exercice 6

A est un point et (D) est une droite du plan.

Déterminer la distance du point A à la droite (D) dans chacun des cas suivants:

a.
$$A(1;5)$$
 et $(D): -x\sqrt{2} + y - 5 = 0$.

b.
$$A(\sqrt{3};\sqrt{2})$$
 et (D): $x\sqrt{3} - y\sqrt{2} - 1 = 0$.

c.
$$A(-2;1)$$
 et $(D):5x+12y-28=0$.

d.
$$A(0;-1)$$
 et (D) : $y = 2x-2$.

Approfondir les apprentissages

Exercice 7

Soit \vec{u} et \vec{u} deux vecteurs tels que $\vec{u} = \vec{i} + 2\vec{j}$ et $\vec{v} = 2x\vec{i} - x\vec{j}$ où x est un nombre réel.

- 1) Monter que \vec{u} et \vec{u} sont orthogonaux.
- 2) Déterminer x pour que : $\|\vec{v}\| = \sqrt{5}$

Exercice 8

On considère dans le plan les points A(-2;3); B(2;0) et M(x;y) tels que x et y sont deux nombres réels.

- 1) Vérifier que : \overline{AM} . $\overline{AB} = 4x 3y + 17$.
- 2) Soit (D) l'ensemble des points M(x; y) du plan, vérifiant \overrightarrow{AM} . $\overrightarrow{AB} = 15$
 - a. Montrer que (D) est la droite définie par l'équation : 4x-3y+2=0.
 - b. En déduire que les droites (D) et (AB) sont perpendiculaires.
 - c. Vérifier que d(B;(D)) = 2.

Exercice 9

Soient A(1;2), B(1;-3) et C(3;1) trois points du plan, et soient (Δ) et (Δ') les médiatrices respectives des segments [AC]et [BC].

- 1) Déterminer une équation cartésienne de chacune des droites (Δ) et (Δ') .
- 2) En déduire que les droites (Δ) et (Δ') sont perpendiculaires.

Exercice 10

On considère dans le plan rapporté à un repère orthonormé direct, les points A(2;1), B(0;2) et $C\left(\frac{1}{2};1\right)$

1) Calculer $\cos\left(\overrightarrow{AB}; \overrightarrow{AC}\right) et \sin\left(\overrightarrow{BC}; \overrightarrow{BA}\right)$.

2) a. Calculer $\sin\left(\overline{\overrightarrow{CA}};\overline{\overrightarrow{CB}}\right)$.

b. Que peut-on déduire?

Exercice 11

On considère dans le plan les points A(1;1) et B(x;y) tels que x et y sont deux nombres réels

1) Résoudre dans \mathbb{R}^2 ; le système : $\begin{cases} x + y = \sqrt{3} \\ x^2 + y^2 = 2 \end{cases}$

2) Déterminer x et y pour que le triangle AOB soit isocèle de sommet O et $AOB = \frac{\pi}{6}$

Expression analytique

Exercice 12

On considère dans le plan les points A(0;1); B(4;1) et C(x;y) tels que x et y sont deux nombres réels. Déterminer x et y pour que le triangle ABC soit équilatéral.

Exercice 13

On considère dans le plan rapporté au repère orthonormé direct (0; i, j), les points A(1; -2); B(3; 1) et C(1; 3).

1) a. Calculer $\sin\left(\overline{\overrightarrow{AB}}; \overline{\overrightarrow{AC}}\right)$

b. En déduire l'aire du triangle ABC.

2) a. Donner une équation de la droite (AB).

b. Calculer la distance du point C à la droite (AB).

c. En déduire de nouveau, l'aire du triangle ABC .

Exercice 14

Déterminer les valeurs du nombre réel a pour lesquelles les droites (D)et (D')soit perpendiculaires dans chacun des cas suivants (si c'est possible).

a. (D):
$$x-3y+5=0$$
 et (D'): $2x-(a+1)y=0$

b. (D):
$$y = -ax + 2$$
 et (D'): $ax + (a-2)y - 1 = 0$

c. (D):
$$ax + y - 3 = 0$$
 et (D'): $ax + (a+2)y - a = 0$

Exercice 15

On considère dans le plan les points A(3;-1); B(-2;1) et C(x;2) où $x \in \mathbb{R}$.

1) a. Déterminer x pour que le triangle ABC soit isocèle de sommet C.

b. Donner une solution géométrique permettant une construction du point C(sans calculer x) dans ce cas.

whatsapp: 0604488896

2) a. Déterminer x pour que le triangle ABC soit isocèle de sommet A.

b. Donner une solution géométrique permettant une construction du point C dans ce cas (sans calculer x).