

Série n • 1 Exercices sur fonction exponentielle Terminal S

N N N

N

N

N

N N

N N

N

Simplifier les expressions suivantes où x est un réel quelconque.

$$a) \ \frac{e^{1+x}}{e^{x+2}}$$

b)
$$\frac{e^{3x} + e^x}{e^{2x} + e^x}$$

$$c)\left(\frac{e}{e^{-x}}\right)^4$$

N

 $c)\left(\frac{e}{e^{-x}}\right)^4 = \frac{e^4}{\left(e^{-x}\right)^4}$

a)
$$\frac{e^{1+x}}{e^{x+2}} = e^{1+x-(x+2)}$$

$$= e^{1+x-(x+2)}$$

$$= e^{-1}$$

$$= \frac{1}{e}$$

on utilise la propriété $\frac{e^a}{a^b} = e^{a-b}$

Série n • 1 1

Suppose Mathematical Simplifier les expressions suive

Exercice 1

Simplifier les expressions suive

a)
$$\frac{e^{1+x}}{e^{x+2}}$$

b) $\frac{e^{3x} + e^x}{e^{2x} + e^x}$

Correction

a) $\frac{e^{1+x}}{e^{x+2}} = e^{1+x-(x+2)}$
 $= e^{1+x-(x+2)}$
 $= e^{-1}$
 $= \frac{1}{e}$

b) $\frac{e^{3x} + e^x}{e^{2x} + e^x} = \frac{e^x(e^{2x} + 1)}{e^x(e^x + 1)}$
 $= \frac{e^{2x} + 1}{e^x + 1}$
 $= \frac{e^{2x} + 2e^x + 1 - 2e^x}{e^x + 1}$
 $= \frac{(e^x + 1)^2 - 2e^x}{e^x + 1}$
 $= e^x + 1 - \frac{2e^x}{e^x + 1}$
 $= e^x + 1 - \frac{2e^x}{e^x + 1}$

On factorise par e^x pour simplifier l'expression; et ajoute $2e^x$ puis on la retranche pour faire apparaitre une identité remarquable

$$=\frac{e^4}{e^{-4x}}$$

$$=e^{4x+4}$$

N N

$$= \frac{e^{4x}}{e^{-4x}}$$
$$= e^{4x+4}$$
$$= e^{4(x+1)}$$

Exercice 2 Résoudre dans \mathbb{R} les équations suivantes :

(a)
$$e^{2-x} = e^x$$
 (b) $e^{2x+3} = 1$ (c) $e^{5-x^2} = e^x$

d)
$$e^{-x} = 0$$
 e) $2e^{-x} = \frac{4}{e^x + 1}$ f) $e^{2x} + e^x - 2 = 0$

Correction

$$a) e^{2-x} = e^x donc 2 - x = x$$

$$d$$
'où $2x = 2$

$$donc \ x=1$$
 $par suite \ S=\{1\}$

b)
$$e^{2x+3} = e^0 \ donc$$

$$d'où 2x + 3 = 0$$

$$d'où 2x = -3$$

$$donc \ x = \frac{-3}{2} \qquad par \ suite \ S = \left\{ \frac{-3}{2} \right\}$$

c)
$$e^{5-x^2} = e \ donc \ 5 - x^2 = 1$$

$$d'où 4 - x^2 = 0$$

$$d'où x^2 = 4$$

$$donc \ x = -2 \ ou \ x = 2$$
 $par suite \ S = \{-2, 2\}$

d)
$$e^{-x} = 0$$
 comme $e^{x} > 0$; alors l'équation $e^{-x} = 0$ n'admet pas de solution.

$$Donc S = \emptyset$$

e)
$$2e^{-x} = \frac{4}{e^x + 1} donc \ 2e^{-x} (e^x + 1) = 4$$

$$d'où 2(1+e^{-x})=4$$

$$donc \ 1 + e^{-x} = 2$$

$$d'où e^{-x} = 1$$

$$d$$
'où $e^{-x} = 1$

$$d'où e^{-x} = e^0$$

$$donc - x = 0$$

$$d'où x = 0$$

par suite
$$S = \{0\}$$

f)
$$e^{2x} + e^x - 2 = 0$$

On pose
$$X = e^x$$

L'équation devient $X^2 + X - 2 = 0$

Est on ait amené à résoudre une équation du 2^{éme} degré

On calcule le discriminant $\Delta = 1^2 - 4 \times 1 \times (-2) = 9$

Donc l'équation admet deux solutions $X_1 = \frac{-1 - \sqrt{9}}{2} = -2$ et $X_2 = \frac{-1 + \sqrt{9}}{2} = 1$

Et comme on sait que $(\forall t \in \mathbb{R}); e^t > 0$

Alors la solution $X_1 = -2$ n'est pas possible ; d'où l'équation admet une seule solution X = 1

 $D'où e^x = 1 : donc x = 0$

Alors $S = \{0\}$

Exercice 3

N

Résoudre dans \mathbb{R} *l'inéquation suivante :* $1-e^{x^2-1} > 0$

Correction

$$\overline{On\ a: 1-e^{x^2-1}} > 0 \ ;\ donc\ 1 > e^{x^2-1}$$

$$D'où e^{x^2-1} < e^0$$

Donc
$$x^2 - 1 < 0$$

Alors
$$0 < x^2 < 1$$

$$Donc \ 0 < \sqrt{x^2} < 1$$

$$Donc \ 0 < |x| < 1$$

$$\square D$$
'où $-1 < x < 1$

$$Alors S =]-1;1[$$

Exercice 4 ■

Résoudre dans $\mathbb R$ les inéquations suivantes :

a)
$$e^{2x} - e^{x+1} < 0$$

$$b)1 - e^{x-2} \ge 0$$

$$(c) e^{x} - \frac{1}{e^{x}} \le 0$$

$$\frac{1}{e^x} - e > 0$$

Résoudre dans
$$\mathbb{R}$$
 les inéquations suivantes a) $e^{2x} - e^{x+1} < 0$
 b) $1 - e^{x-2} \ge 0$
 c) $e^x - \frac{1}{e^x} \le 0$
 d) $\frac{1}{e^x} - e > 0$
 $\frac{Correction}{a}$
 a) $On \ a : e^{2x} - e^{x+1} < 0 ; donc $e^x e^x - e^x e < 0$$

$$e^{x}(e^{x}-e)<0$$
 et comme $e^{x}>0$ pour tout $x \in \mathbb{R}$

Alors
$$e^x - e < 0$$

$$D'où e^x < e$$

$$Donc \quad x < 1 \qquad \qquad S =] -\infty; 1[$$

b) On
$$a: 1-e^{x-2} \ge 0$$
; donc $e^{x-2} \le 1$
 $e^{x-2} \le e^0$
 $x-2 \le 0$
 $x \le 2$ $S =]-\infty; 2]$

c) On
$$a: e^{x} - \frac{1}{e^{x}} \le 0$$
; donc $e^{x} \le \frac{1}{e^{x}}$

$$e^{2x} \le 1$$

$$e^{2x} \le e^{0}$$

$$2x \le 0$$

$$x \le 0$$

$$S =]-\infty; 0]$$

d) On
$$a: \frac{1}{e^{x}} - e > 0$$
; $donc \frac{1}{e^{x}} > e$

$$e^{x}e < 1$$

$$e^{x+1} < e^{0}$$

$$x + 1 < 0$$

$$x < -1$$

$$S =]-\infty; -1[$$

Exercices 5:

■ Résoudre des équations et inéquations avec des exponentielles en posant $X = e^x$ changement ■ d'inconnue.

 $\stackrel{lacktriangle}{\mathbb{R}}$ Résoudre dans $\mathbb R$ les équations et inéquations suivantes,

a)
$$2e^{2x} - e^x = 1$$

$$e^{2x} + 2e^x - 3 \le 0$$

Correction

a) on
$$a: 2e^{2x} - e^x = 1$$
; donc $2e^{2x} - e^x - 1 = 0$

Posons
$$X = e^x$$
; alors l'équation devient $2X^2 - X - 1 = 0$

Calculons le discriminant de l'équation en
$$X$$
 de 2éme degré : $\Delta = (-1)^2 - 4 \times 2 \times (-1) = 9$

Donc l'équation admet deux solutions :
$$X_1 = \frac{1 - \sqrt{9}}{4} = -\frac{1}{2}$$
 et $X_2 = \frac{1 + \sqrt{9}}{4} = 1$

Et comme $e^x > 0$ pour tout $x \in \mathbb{R}$; alors la solution négative n'est pas valable d'où

l'équation $2e^{2x} - e^x = 1$ admet une seule solution telle que : $e^x = X_2 = 1$; donc x = 0

$$D$$
 où $S = \{0\}$

$$b$$
) On $a: e^{2x} + 2e^x - 3 \le 0$

Posons
$$X = e^x$$
; alors l'inéquation devient $X^2 + 2X - 3 \le 0$

<u>www.guessmaths.co</u> <u>E-mail</u>: <u>abdelaliguessouma@gmail.com</u> <u>WhatsApp</u>: 0717467136

Pour étudier le signe du polynôme de deuxième degré cherchons les solution de l'équation

$$X^{2} + 2X - 3 = 0$$
; $\Delta = (2)^{2} - 4 \times 1 \times (-3) = 16$

Donc l'équation admet deux solutions : $X_1 = \frac{-2 - \sqrt{16}}{2} = -3$ et $X_2 = \frac{-2 + \sqrt{16}}{2} = 1$

Dressons le tableau de signe de $(X^2 + 2X - 3)$

X	$-\infty$	-3	0	1		$+\infty$
$X^2 + 2X - 3$	+	ϕ	_	0	+	

Et comme on sait que $(\forall t \in \mathbb{R}); e^t > 0$

Alors l'ensemble

càd $e^{2x} + 2e^x - \frac{1}{2}$ Donc S = [0;1]Exercices 6:

Déterminer le

a) $1 - e^x$ b) $e^{2x} - 1$ c) $e^{2x} - e^{x+1}$ d) $e^{x^2} - e^x$ e) $e^x - \frac{1}{e^x}$ Correction

a) On $e^x - \frac{1}{e^x}$ Alors l'ensemble des solutions de l'inéquation est l'intervalle où X > 0 et $X^2 + 2X - 3 \le 0$ $c \dot{a} d e^{2x} + 2e^{x} - 3 \le 0$

Déterminer le signe des expressions suivantes sur \mathbb{R} :

a)
$$1 - e^{x}$$

b)
$$e^{2x} - 1$$

c)
$$e^{2x} - e^{x+1}$$

$$d) e^{x^2} - e^x$$

e)
$$e^{x} - \frac{1}{e^{x}}$$

N

a) On
$$a: \triangleright 1-e^x \le 0$$
; donc $e^x \ge 1$

$$\rho^x > \rho^0$$

$$ightharpoonup 1 - e^x \ge 0$$
; $donc \ e^x \le 1$

$$e^x < e^0$$

$$x \le 0$$

D'où le tableau de signe de $1-e^x$

X	$-\infty$	0	+∞
$1-e^x$	+	d -	_

b) On
$$a : \triangleright e^{2x} - 1 \le 0 : donc \ e^{2x} \le 1$$

$$e^{2x} \le e^0$$

$$2x \le 0$$

N

N

N

N N

N N.

N N

N

N

N

N N

N

N N

N N

N

N N

N

N

N N

N

N

N N N

N N N

N N

N

N

N

$$x \le 0$$

$$e^{2x} - 1 \ge 0 \text{ ; donc } e^{2x} \ge 1$$

$$e^{2x} \ge e^{0}$$

$$2x \ge 0$$

$$x \ge 0$$

N

N

N

N

N N N N

		$2x \ge 0$					
$x \ge 0$							
la la tabla an d		— •					
'où le tableau d	e signe ae	1-e					
X	$-\infty$	0		$+\infty$			
$e^{2x}-1$	_	ф	+				

$$2x \le x + 1$$

$$ightharpoonup e^{2x} - e^{x+1} \ge 0$$
; $donc \ e^{2x} \ge e^{x+1}$

$$2x \ge x+1$$

$$x \ge 1$$

D'où le tableau de signe de $e^{2x} - e^{x+1}$

Х	$-\infty$	1		+∞
$e^{2x} - e^{x+1}$		Ф	+	

$$x^2 \le x$$

$$x^2 - x \le 0$$

$$x(x-1) \le 0$$

$$\begin{cases} x \le 0 \\ x - 1 \ge 0 \end{cases} ou \begin{cases} x \ge 0 \\ x - 1 \le 0 \end{cases}$$

$$\begin{cases} x \le 0 \\ x \ge 1 \end{cases} ou \begin{cases} x \ge 0 \\ x \le 1 \end{cases}$$

$$0 \le x \le 1$$

$$e^{x^{2}} - e^{x} \ge 0 \; ; \; donc \; e^{x^{2}} \ge e^{x}$$

$$x^{2} \ge x$$

$$x^{2} - x \ge 0$$

$$x(x-1) \ge 0$$

$$\begin{cases} x \le 0 & \text{ou } \begin{cases} x \ge 0 \\ x - 1 \le 0 \end{cases} \\ x \le 1 \end{cases}$$

$$\begin{cases} x \le 0 & \text{ou } \begin{cases} x \ge 0 \\ x - 1 \ge 0 \end{cases}$$

$$x \le 0$$
 ou $x \ge 1$

N N

N

D'où le tableau de signe de $e^{x^2} - e^x$

N N

N

N

N

X	$-\infty$	0		1		$+\infty$
$e^{x^2}-e^x$	4	- ф	_	0	+	

$$e^{x^{2}} - e^{x} + \emptyset -$$

$$e^{x^{2}} - e^{x} + \emptyset -$$

$$e^{x} - \frac{1}{e^{x}} \le 0 \text{ ; donc } e^{x} \le \frac{1}{e^{x}}$$

$$e^{2x} \le 1$$

$$e^{2x} \le e^0$$

$$2x \le 0$$

$$x \le 0$$

$$e^x - \frac{1}{e^x} \ge 0 ; donc \ e^x \ge \frac{1}{e^x}$$

$$e^{2x} > 1$$

$$e^{2x} \ge e^0$$

$$2x \ge 0$$

$$x \ge 0$$

D'où le tableau de signe de $e^x - \frac{1}{e^x}$

1						
	$\boldsymbol{\mathcal{X}}$	$-\infty$		0		$+\infty$
	$e^x - \frac{1}{e^x}$		_	0	+	

Exercices 7:

Soit f la fonction définie sur \mathbb{R} par $f(x)=1-e^{-x}$

- 1) Démontrer que pour tout réel x < 0, f(x) < 0.
- 2) Démontrer que pour tout réel $x \ge 0$, $0 \le f(x) < 1$.

Correction

N

1) Soit x un réel tel que : x < 0, donc -x > 0

$$e^{-x} > e^0.$$

$$e^{-x} > 1.$$

$$e^{-x} - 1 > 0$$
.

$$1 - e^{-x} < 0$$
.

$$f(x) < 0$$
.

2) Soit x un réel tel que : $x \ge 0$, donc $-x \le 0$

 $e^{-x} \le e^0.$

$$e^{-x} \le e^{0} .$$

$$e^{-x} \le 1 .$$

$$1 - e^{-x} \ge 0 .$$

$$\begin{cases} 1 - e^{-x} \le 1 \\ 1 - e^{-x} \le 1 \end{cases}$$

$$\begin{cases} f(x) \le 1 \\ f(x) \ge 0 \end{cases}$$

$$0 \le f(x) < 1 .$$

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N N. N. N.

N

N N N

N N N N

N N

N.

N

N

N

N

N N N N

N N

N

www.guessmaths.co E-mail: abdelaliguessouma@gmail.com WhatsApp: 0717467136

N