Etude de fonction et suite

2éme Bac Sc. Maths

<u>Problème</u>

Partie 1: Soit f la fonction définie sur \mathbb{R}^+ par : $f(x) = \frac{1}{2 + \arctan x}$ et (u_n) la suite

$$num\acute{e}rique\ d\acute{e}finie\ \ par: \begin{cases} u_0=0\\ u_{n+1}=f\left(u_n\right) \qquad \left(\forall n\in \mathrm{IN}\right) \end{cases}$$

- 1) Montrer que l'équation : f(x) = x admet une solution unique α dans $[0; +\infty[$ et que : $0 < \alpha < 1$.
- (2) a) Montrer que : $(\forall x \in]0;1[)$; $|f'(x)| \le \frac{1}{4}$ et que : $f([0;1]) \subset [0;1]$
 - b) Déduire que : $(\forall n \in IN)$; $0 \le u_n \le 1$
- 3) a) Montrer que : $(\forall n \in IN)$; $|u_{n+1} \alpha| \le \frac{1}{4} |u_n \alpha|$
 - b) Déduire que : $(\forall n \in IN)$; $|u_n \alpha| \le \left(\frac{1}{4}\right)^n$ puis déterminer $\lim_{n \to +\infty} u_n$

Partie 2

Soit g_n la fonction définie sur $[0;+\infty[par:g_n(x)]=\frac{1}{f(\frac{x}{n})}+\frac{x}{2}-2$ pour tout $n \in \mathbb{N}^*$

- 1) a) Vérifier que : $(\forall x \ge 0)$; $g_n(x) = \arctan\left(\frac{x}{n}\right) + \frac{x}{2}$ et que g_n réalise une bijection de \mathbb{R}^n vers \mathbb{R}^+ .
 - b) Montrer que l'équation $g_n(x)=1$ admet une solution unique α_n dans \mathbb{R}^+ et que $0 < \alpha_n < 2$.
- 2) a) Montrer que : $(\forall x \ge 0)$; $g_{n+1}(x) \le g_n(x)$ puis déduire les variations de $(\alpha_n)_{n\ge 1}$.
 - b) Montrer que $(\alpha_n)_{n\geq 1}$ est convergente.
 - c) Calculer: $\lim_{n\to+\infty} \left(\frac{\alpha_n}{n}\right)$ déduire que : $\lim_{n\to+\infty} \alpha_n = 2$
- 3) Montrer que : $2\alpha_n \left(\frac{\arctan\left(\frac{\alpha_n}{n}\right)}{\left(\frac{\alpha_n}{n}\right)} \right) = n(2-\alpha_n)$ puis déduire : $\lim_{n \to +\infty} \left(n(2-\alpha_n) \right)$
- 4) a) Montrer que : $(\forall x > 0)$; $\arctan(x) < x$, puis déduire que : $(\forall n \in \mathbb{N}^* \{1\})$; $1 < \alpha_n$
 - b) En appliquant le TAF à la fonction : $t \mapsto \sqrt[n]{t}$ sur l'intervalle $\left[1;\alpha_n\right]$; montrer que : $1 < \sqrt[n]{\alpha_n} < 1 + \frac{1}{n}$; puis déduire $\lim_{n \to +\infty} \left(\sqrt[n]{\alpha_n}\right)$.
- 5) Montrer que : $\lim_{n\to+\infty} \left(n \left(\sqrt[n]{\alpha_n} 1 \right) \right) = \ln 2$