

Série nº1 d'exercices non corrigés sur les suites numériques

Exercice 1

- 1) On considère une suite arithmétique (V_n) de raison r=2 et de premier terme $V_0=3$.
 - a) Calculer V_n en fonction de n.
 - b) Calculer $S_n = V_0 + V_1 + \dots + V_{n-1} + V_n$ en fonction de n.
- 2) Calculer $\lim_{n\to+\infty} \left(\frac{V_n}{n}\right)$ puis $\lim_{n\to+\infty} \left(\frac{S_n}{n^2}\right)$
- 3) On considère la suite (U_n) telle que :

$$V_n = \frac{2U_n + 1}{U_n + 2}$$

- a) Calculer $\lim_{n\to+\infty} U_n$
- b) Calculer: $S'_n = \frac{1}{U_0 + 2} + \frac{1}{U_1 + 2} + \dots + \frac{1}{U_n + 2}$
- c) Calculer $\lim_{n\to+\infty} \left(\frac{S_n}{n^3}\right)$.

Exercice 2

On considère la suite numérique (U_n) définie par

$$: \quad U_n = \frac{3^n}{n+1}$$

- 1) Calculer U_0 ; U_1 ; U_2 ; U_3 .
- 2) Calculer $U_{n+1} U_n$, en déduire les variations de (U_n) .
- 3) Montrer que : $(\forall n \in IN^*)$; $n < U_n$.

Exercice 3

- 1) (V_n) est une suite géométrique de raison q=2 , avec $V_0=7$.
- a) Calculer V_n en fonction de n.
- b) Calculer $S_n = V_0 + V_1 + \dots + V_{n-1} + V_n$.
- c) Calculer $\lim_{n\to +\infty} V_n$ puis $\lim_{n\to +\infty} S_n$
- 2) On considère la suite (U_n) telle que :

$$V_n = \frac{U_n}{3 - U_n}$$

a) Calculer $\lim_{n\to+\infty} U_n$

- b) . Calculer: $S'_n = \frac{1}{U_0 3} + \frac{1}{U_1 3} + \dots + \frac{1}{U_n 3}$
- 3) Calculer puis $\lim_{n\to+\infty} \left(\frac{S'_n}{n2^n}\right)$

Exercice 4

1) (V_n) est une suite géométrique de raison $q = \frac{2}{5}$,

$$avec V_4 = \frac{4}{625} .$$

- a) Calculer V_0 puis V_n en fonction de n.
- b) Calculer $A = V_{10} + V_{11} + \dots + V_{99} + V_{100}$
- c) Calculer $S_n = V_0 + V_1 + \dots + V_{n-1} + V_n$
- 2) On considère la suite (U_n) telle que :

$$V_n = \frac{U_n - 1}{U_n + 2}$$
 On pose.

$$S'_n = \frac{1}{U_0 + 2} + \frac{1}{U_1 + 2} + \dots + \frac{1}{U_n + 2}$$

- a) Montrer que : $\forall p \in IN : \frac{1}{U_p + 2} = \frac{1}{3} (1 V_p).$
- b) Montrer que : $U_n = \frac{1 + \frac{1}{2} \left(\frac{2}{5}\right)^n}{1 \frac{1}{4} \left(\frac{2}{5}\right)^n}$ et que

$$S'_n = \frac{n}{3} + \frac{7}{36} + \frac{1}{18} \times \left(\frac{2}{5}\right)^n \times e$$

c) Calculer $\lim_{n\to+\infty} U_n$ puis $\lim_{n\to+\infty} \left(S'_n - \frac{n}{3} \right)$.