

## Série n°1 «Le Théorème des valeurs intermédiaires» 2éme Bac PC-SVT

1. Montrer que les équations suivantes ont au moins une solution dans l'intervalle indiqué .

a) 
$$x^7 - x^2 + 1 = 0$$
 sur  $[-2;0]$ 

b) 
$$\tan(x) = \frac{3}{2}x \ sur \left] \frac{\pi}{4}; \frac{\pi}{3} \right[$$

c) 
$$\sqrt[3]{x^3 + 6x + 1} = 3x + 2$$
 sur **IR**

- 2. a) Montrer que l'équation  $\frac{1}{(x-1)^3} + \frac{1}{(x-2)^5} = 0$  possède dans ]1;2[ une solution unique.
  - b) Montrer que cette équation n'admet pas de solution dans les intervalles  $]-\infty;1[$  et  $]2;+\infty[$  (on pourra utiliser un tableau de signes).
- 3. a) Montrer que l'équation  $x^3 3x 3 = 0$  admet une solution unique  $\alpha$  dans l'intervalle [2;3].
  - b) Donner un encadrement de  $\alpha$  d'amplitude égale à  $10^{-1}$ .
- 4. On considère l'équation x = cos(x).
  - a) Montrer que toute solution appartient nécessairement à l'intervalle [0;1].
  - b) Montrer l'existence et l'unicité de la solution.
  - c) En donner des valeurs approchées par défaut et par excès à  $10^{-1}$  près, puis à  $10^{-2}$  près.
- 5. I) Soit la fonction  $P(x) = x^3 + x + 1$ 
  - a) Montrer qu'il existe un unique réel  $\alpha$  tel que  $P(\alpha) = 0$ ; et que  $\alpha \in ]-1;0[$ .
  - b) Donner un encadrement de  $\alpha$  d'amplitude  $10^{-1}$ .
  - **II**) Soit la fonction  $f(x) = 6x^5 + 10x^3 + 15x^2 30$ .
    - a) Calculer f'(x); puis étudier son signe en fonction de  $\alpha$ .
    - b) Dresser le tableau de variation de f.
- 6. **I**) Soit la fonction  $g(x) = x^3 + 3x 2$ .
  - a) Montrer qu'il existe un unique réel  $\alpha$  tel que  $g(\alpha) = 0$ ; et que  $: \alpha \in \left[\frac{1}{2}; 1\right]$ .
  - b) Donner un encadrement de  $\alpha$  d'amplitude  $10^{-1}$ .
  - **II**) Soit la fonction  $f(x) = \frac{x^3 + 1}{x^2 + 1}$ .
    - a) Préciser  $D_f$ . Calculer f'(x) et dresser le tableau de variation de f (On utilisera les résultats de la partie I). 1
    - b) Etudier les branches infinies de la courbe de f en  $+\infty$  et en  $-\infty$  ainsi que la position relative de cette courbe et des asymptotes.(on pourra écrire  $\frac{x^3+1}{x^2+1}=ax+b-\frac{x(x-1)}{x^2+1}$ )
    - c) Tracer la courbe de f dans un repère orthonormé.

## Exercices supplémentaires

- 7. a) Montrer que la fonction  $P(x) = 2x^3 3x^2 1$  s'annule une seule fois sur  $\mathbb{R}$ , en  $\alpha$ .

  Donner un encadrement de  $\alpha$  d'amplitude  $10^{-1}$ .
  - b) Faire une étude complète de la fonction  $f(x) = \frac{1-x}{1+x^3}$ .
- 8. Soit la fonction  $f(x) = x\sin x + \cos x$ .
  - a) Calculer f'(x); puis dresser le tableau de variation de f sur $[0;2\pi]$ .
  - b) Montrer que l'équation f(x) = 0 admet une unique solution  $\alpha$  dans  $\left[\frac{\pi}{2}; \frac{3\pi}{2}\right]$
  - c) Montrer que  $\frac{5\pi}{6} < \alpha < \pi$ .
- 9. I) Soit  $P(x) = -x^3 + 3x 6$ .
  - a) Montrer que l'équation P(x) = 0 admet dans l'intervalle  $-\infty$ ; -1 une solution unique  $\alpha$
  - b) Montrer que  $-3 < \alpha < -2$ , puis donner un encadrement de  $\alpha$  d'amplitude  $10^{-1}$ .
  - c) Dresser le tableau de variation de P.
  - d) En déduire que α est l'unique racine réelle de P.
- (II) Soit la fonction  $f(x) = \frac{3-x^3}{x^2-1}$ .
  - a) Déterminer  $D_f$  le domaine de définition de f ainsi que les limites de f aux bornes de  $D_f$
  - b) Calculer la dérivée de f, étudier son signe. Dresser le tableau de variation de f.
  - c) Montrer que pour tout  $x \in D_f$  on  $a : f(x) = -x \frac{x-3}{x^2-1}$
  - d) Déterminer les asymptotes à f en  $+\infty$  et en  $-\infty$ , étudier la position relative de la courbe de f et deux de ces asymptotes (on pourra utiliser  $f(x) = -x \frac{x-3}{x^2-1}$ ).
  - d) Tracer la courbe de f dans un repère orthonormé.

www.guessmaths.co

<u>E-mail</u>: <u>abdelaliguessouma@gmail.com</u>

<u>whatsapp</u>: 0604488896