

Série n°9 d'exercices sur « Généralités sur les fonctions » 1ére Bac Sc Exp

FONCTION TRINÔME - FONCTION HOMOGRAPHIQUE

EXERCICE 1

Dresser le tableau de variations de la fonction f puis tracer sa courbe représentative dans chacun des cas suivants:

1)
$$f(x) = 2x^2 - 2$$

1)
$$f(x) = 2x^2 - 2$$
 ; 2) $f(x) = x^2 - 2x$

3)
$$f(x) = -x^2 + 4x - 3$$
 ; 4) $f(x) = (x - 3)^2$

4)
$$f(x) = (x-3)^2$$

EXERCICK 2

Dresser le tableau de variations de la fonction /puis tracer sa courbe représentative dans chacun des cas suivants:

1)
$$f(x) = \frac{2}{x-1}$$
 ; 2) $f(x) = \frac{x-1}{x-2}$

2)
$$f(x) = \frac{x-1}{x-2}$$

3)
$$f(x) = \frac{2x-1}{x+1}$$
 ; 4) $f(x) = \frac{2x}{2x-1}$

4)
$$f(x) = \frac{2x}{2x-1}$$

EXERCICE 3

Soit f la fonction numérique définie sur \mathbb{R} par : $f(x) = x^2 - 4x + 3$

- 1) Dresser le tableau de variations de f
- 2) Soit (C_f) la courbe représentative de la fonction f dans un repère orthonormé $(0; \vec{i}; \vec{j})$.
 - a) Déterminer les points d'intersection de la courbe (C_f) avec les axes du repère.
 - b) Tracer la courbe (C_f) dans le repère $(0; \vec{i}; \vec{j})$.
 - c) Déterminer graphiquement f([0;2]).
 - d) Résoudre graphiquement l'inéquation : $f(x) \ge 0$.
- 3) On considere la fonction g définie sur \mathbb{R} par: $g(x) = x^2 3|x| + 2$
 - a) Étudier la parité de la fonction g
 - b) Vérifier que pour tout $x \in \mathbb{R}^*$: g(x) = f(x), puis dresser le tableau de variations de f
 - c) Tracer la courbe $(C_{_{g}})$ dans le repère $(0;\vec{i};\vec{j})$
 - d) Résoudre graphiquement l'inéquation: $g(x) \le 3$.

EXERCICE 12

Soit f la fonction numérique définie sur $\mathbb{R} - \{2\}$ par: $f(x) = \frac{2x-2}{x-2}$

- 1) Déterminer D_f l'ensemble de définition de f.
- 2) Dresser le tableau de variations de f.
- 3) Soit (C_f) la courbe représentative de la fonction f dans un repère orthonormé $(0; \vec{i}; \vec{j})$.

<u>E-mail</u>: <u>abdelaliguessouma@gmail.com</u>

- a) Déterminer les points d'intersection de la courbe (C_f) avec les axes du repère.
- b) Tracer la courbe (C_f)
 - c) Déterminer graphiquement f(]2;4])
- d) Résoudre graphiquement l'inéquation $f(x) \le 0$.
- 3) On considère la fonction g définie sur $\mathbb{R} \{2\}$ par : $g(x) = \left| \frac{2x-1}{x-1} \right|$
 - a) Tracer la courbe $\left(C_{g}\right)$ dans le repère $\left(0;\vec{i};\vec{j}\right)$
 - b) Dresser le tableau de variations de g.
 - c) Déterminer selon les valeurs du paramètre m , le nombre de solutions de l'équation: $\frac{2x-1}{x}$

EXERCICE 13

Soient f et g les fonctions numériques définies sur \mathbb{R} par: $f(x) = x^2 - 4x + 3$ et $g(x) = \frac{12}{x}$

 (C_f) et (C_g) les courbes représentatives de f et g dans un repère orthonormé $(0;\vec{i};\vec{j})$.

- 1) a) Résoudre dans \mathbb{R} l'équation : f(x) = 0.
 - b) Interpréter le résultat graphiquement.
- 2) a) Résoudre dans \mathbb{R} l'équation: f(x) = g(x).
 - b) Interpréter le résultat graphiquement
- 3) Tracer les courbes (C_f) et (C_g)
- 4) En déduire une comparaison des fonctions f et g.

EXERCICE 14

Soient f et g les fonctions numériques définies par: $f(x) = \frac{2x-2}{x-2}$ et $g(x) = x^2$.

 (C_f) et (C_g) les courbes représentatives de f et g dans un repère orthonormé $(0;\vec{i};\vec{j})$.

E-mail: abdelaliguessouma@gmail.com

<u>whatsapp</u>: 0604488896

- 1) a) Résoudre dans R l'équation f(x) = g(x).
 - b) Interpréter le résultat graphiquement.
- 2) Tracer les courbes (C_f) et (C_g) .

En déduire une comparaison des fonctions f et g