

Exercice 1

On considère la suite $(u_n)_{n\in\mathbb{I}\mathbb{N}}$ définie par : $\begin{cases} u_0 = 1 \\ u_{n+1} = 1 + \frac{1}{1 + u_n} \end{cases} \quad (\forall n \in \mathbb{I}\mathbb{N})$

- 1) Montrer que : $(\forall n \in \mathbb{IN})$; $u_n \in [1; \frac{3}{2}]$
- 2) Montrer que : $(\forall n \in \mathbb{IN}^*)$; $|u_{n+1} u_n| \le \frac{1}{4} |u_n u_{n-1}|$
- 3) On considère les suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ définies par : $a_n=u_{2n}$ et $b_n=u_{2n+1}$
 - a) vérifier que : $(\forall n \in IN^*)$; $b_n = 1 + \frac{1}{1 + a_n}$
 - b) Montrer que : $(\forall n \in \mathbb{IN})$; $a_n \leq b_n$.
 - f) Montrer que $(a_n)_{n\in\mathbb{N}}$ est croissante et $(b_n)_{n\in\mathbb{N}}$ est décroissante
 - d) Montrer que les suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ sont adjacentes
- 4) Montrer que : $(\forall n \in IN)$; $|u_{n+1} \sqrt{2}| \le \frac{1}{4} |u_n \sqrt{2}|$ puis déduire $\lim_{n \to +\infty} u_n$.

Exercice 2

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par : $u_k = \frac{1}{(k+1)(k+2)}$; $(\forall k \in \mathbb{N})$

- 1) Calculer la somme $S_n = u_0 + u_1 + \cdots + u_n$
- 2) Montrer que la suite $(S_n)_{n\in\mathbb{N}}$ est convergente et calculer sa limite
- 3) On définit la suite $(v_n)_{n\in\mathbb{N}}$ par : $(\forall n\in\mathbb{N})$; $v_n=\frac{1}{n+1}+S_n$
- a) Montrer que les suites $(S_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont adjacentes
- b) En déduire la limites de $(v_n)_{n\in\mathbb{N}}$.

Exercice 3

Partie A: Etude d'une fonction auxiliaire

On considère la fonction f définie pour tout $x \in \mathbb{R}$ par : $f(x) = x^3 + 4x^2 + 6x - 1$

- 1) Calculer f(0); $f(\frac{1}{2})$; f(1) et $\lim_{x \to +\infty} f(x)$.
- 2) Calculer f'(x) pour tout $x \in \mathbb{R}^+$; puis dresser le tableau de variations de f.

- 3) Prouver que f s'annule une fois et une seule sur $[0;+\infty[$ en un point α et que $\alpha \in \left[0;\frac{1}{2}\right[$
- 4) Déterminer le signe de f sur $[0; \alpha[$ et sur $]\alpha; +\infty[$.

Partie B : Détermination d'une valeur approchée de a.

On considère la fonction g définie pour tout $x \in \mathbb{R}^+$ par : $g(x) = \frac{1}{x^2 + 4x + 6}$

- 1) Déterminer un encadrement de $x^2 + 4x + 6$ pour $x \in \left[0; \frac{1}{2}\right]$ et en déduire que $0 \le g(x) \le \frac{1}{6}$
- 2) Montrer que pour tout $x \in \left[0; \frac{1}{2}\right]$; $\left|g'(x)\right| \le \frac{5}{36}$
- 3) On considère maintenant la suite (u_n) définie par $u_0 = 0$ et pour tout $n \in \mathbb{N}$; $u_{n+1} = g(u_n)$
 - a) prouver que pour tout $n \in IN$; $u_n \in [0; \frac{1}{2}]$ (utiliser l'encadrement $0 \le g(x) \le \frac{1}{2}$).
 - b) Prouver que $g(\alpha) = \alpha$ et déduire que pour5 tout $n \in \mathbb{N}$; $|u_{n+1} \alpha| \le \frac{5}{36} |u_n \alpha|$
 - c) En déduire que la suite (u_n) est convergente et donner sa limite.
 - e) Justifier que ; $u_0 \le \alpha \le u_1$; puis en déduire, par récurrence, que : $(\forall n \in IN)$; $u_{2n} \le \alpha \le u_{2n+1}$

