

EXERCICES- TRIGONOMETRIES -

1.BAC – S.M.F

Exercice 1

- 1) Calculer : $\cos\left(\frac{\pi}{12}\right)$, $\sin\left(\frac{\pi}{12}\right)$ et $\tan\left(\frac{\pi}{12}\right)$
- 2) Montrer que $\tan^2\left(\frac{\pi}{12}\right) + \tan^2\left(\frac{5\pi}{12}\right) = 14$

Exercice 2

Démontrer les identités suivantes en précisant à chaque fois leur domaine de définition

1)
$$\sin\left(x - \frac{2\pi}{3}\right) + \sin\left(x + \frac{2\pi}{3}\right) + \sin x = 0$$
 2) $\tan\left(\frac{\pi}{4} + x\right) + \tan\left(\frac{\pi}{4} + x\right) = \frac{2}{\cos\left(2x\right)}$

2)
$$\tan\left(\frac{\pi}{4} + x\right) + \tan\left(\frac{\pi}{4} + x\right) = \frac{2}{\cos(2x)}$$

$$3) \frac{1-\cos x}{\sin x} = \tan\left(\frac{x}{2}\right)$$

Exercice 3

Montrer que :
$$\frac{\cos(6x) + 6\cos(4x) + 15\cos(2x) + 10}{\cos(5x) + 5\cos(3x) + 10\cos(x)} = 2\cos(x)$$

Exercice 4

Pour tout réel x on pose $\varphi(x) = \cos(x)\cos(2x)\cos(4x)$

- 1) Montrer que $8\sin(x)\varphi(x) = \sin(8x)$
- 2) En déduire la valeur de $\cos\left(\frac{\pi}{7}\right)\cos\left(\frac{2\pi}{7}\right)\cos\left(\frac{4\pi}{7}\right)$

Exercice 5

- 1)Montrer que Pour tout réel x on a: $\sqrt{2}\cos\left(x-\frac{\pi}{4}\right) = \cos x + \sin x$ et $\sqrt{2}\cos\left(x+\frac{\pi}{4}\right) = \cos x \sin x$
- 2) Montrer que Pour tout x de $\mathbb{R} \left\{ \frac{\pi}{4} + \frac{k\pi}{2}, k \in \mathbb{R} \right\}$, on a : $\frac{\sin(2x) 1}{\cos(2x)} = \frac{\cos x \sin x}{\cos x + \sin x}$
- 3) En déduire que Pour tout x de $\mathbb{R} \left\{ \frac{\pi}{4} + \frac{k\pi}{2}, k \in \mathbb{R} \right\}$, on a : $\frac{\sin(2x) 1}{\cos(2x)} = \tan\left(x \frac{\pi}{4}\right)$

Exercice 6

Résoudre dans $[-\pi,\pi]$, les équations et les inéquations suivantes :

1)
$$\cos 2x + \sin 2x - 1 = 0$$

2)
$$\cos x - \sin x = \sqrt{2}$$

$$3) \sqrt{3}\cos x - \sin x \ge \sqrt{2}$$

4)
$$\cos\left(\frac{x}{2}\right) - \sin\left(\frac{x}{2}\right) < -1$$

Exercice 7

- 1) Pour tout x de \mathbb{R} , on pose $S(x) = \cos^2(x) + \cos^2(2x) + \cos^2(3x)$
 - a) Montrer que Pour tout x de \mathbb{R} on a: $\cos^2(x) + \cos^2(3x) = \frac{1}{2}(2 + \cos(2x) + \cos(6x))$
 - b) Montrer que Pour tout x de \mathbb{R} on a : $S(x) = 2\cos(x).\cos(2x).\cos(3x) + 1$

2) Résoudre dans \mathbb{R} l'équation : S(x) = 1

3) Calculer
$$S\left(\frac{\pi}{7}\right)$$

Exercice 8

1) Montrer que Pour tout x de \mathbb{R} on a : $\cos(3x) = 4\cos^3(x) - 3\cos(x)$

2) Vérifier que : $\cos\left(\frac{5\pi}{18}\right)$ est solution de l'équation : $4X^3 - 3X + \frac{\sqrt{3}}{2} = 0$

3) En déduire que $\cos\left(\frac{5\pi}{18}\right)$ est un nombre irrationnel.

Exercice 9

Montrer que :
$$\sin\left(\frac{\pi}{30}\right).\sin\left(\frac{7\pi}{30}\right).\sin\left(\frac{13\pi}{30}\right).\sin\left(\frac{19\pi}{30}\right) = \frac{1}{16}$$