

Etude de fonction ln Bac juillet 2003 Session de Rattrapage 2éme Bac Sc.Maths

Partie I

Soit $n \in \mathbb{N}^*$

On considère la fonction g_n définie sur \mathbb{R} par : $g_n(x) = x + e^{-nx}$

et soit (C_n) sa courbe représentative dans un repère orthonormé $(O; \vec{i}; \vec{j})$.

- 1) a) Etudier les variations de g_n .
 - b) Montrer que g_n admet un minimum en un nombre réel u_n , qu'on déterminera en fonction de n.
- 2) a) Calculer $\lim_{x \to -\infty} g_n(x)$ (x) et $\lim_{x \to +\infty} g_n(x)$
 - b) Déterminer les branches infinies de la courbe (C_n) .
- 3) a) Etudier les positions relatives des courbes (C_1) et (C_2) représentatives des fonctions g_1 et g_2 .
 - b) Tracer dans le même repère les courbes (C_1) et (C_2)
- 4) On pose: $u_n = g_n(u_n)(u_n)$, montrer que les deux suites (u_n) et (v_n) sont convergentes et déterminer leurs limites.

<u>Partie II</u>

On considère la fonction f_n définie sur $\left]-\infty; -\frac{1}{2}\right[par: f_n(x) = x + e^{nx}]$

et soit $\left(\Gamma_{_{n}}
ight)$ sa courbe représentative dans un repère orthonormé $\left(O;ec{i};ec{j}
ight)$.

- 1) a) Etudier les variations de $f_{\scriptscriptstyle n}$.
 - b) Déduire que l'équation : $f_n(x) = 0$ admet une solution unique α_n .
- 2) a) Montrer que : $\alpha_n \in \left] -\ln 2; -\frac{1}{2} \right[$.
 - b) Montrer que : $(x-\alpha_1)$ et $(e^x + \alpha_1)$ ont le même signe.
- 3) Soit φ la fonction définie sur $\left[-\infty; -\frac{1}{2}\right]$ par : $\varphi(x) = e^x \frac{1}{\sqrt{e}}x$
 - a) Montrer que la fonction φ est décroissante sur $\left]-\infty; -\frac{1}{2}\right]$.
 - b) Déduire que : $\left| e^x + \alpha_1 \right| \le \frac{1}{\sqrt{e}} \left| x \alpha_1 \right|$ pour tout $x \in \left] -\infty; -\frac{1}{2} \right]$.
- 4) On pose: $\beta_0 = -\frac{1}{2}$ et $\beta_{n+1} = -e^{\beta_n}$ pour tout $n \in \mathbb{N}$.
 - a) Montrer qu'il existe un réel a tel que: $|\beta_{n+1} a| \le \frac{1}{\sqrt{e}} |\beta_n a|$
- b) Montrer que la suite (eta_n) est convergente et déterminer sa limite.

<u>Correction</u>

<u>Parti</u>e I

Soit $n \in \mathbb{N}$

On considère la fonction g_n définie sur \mathbb{R} par : $g_n(x) = x + e^{-nx}$

et soit (C_n) sa courbe représentative dans un repère orthonormé $(O; \vec{i}; \vec{j})$.

1) a) Etudier les variations de g_n .

La fonction g_n est dérivable sur ${
m I\!R}$ comme somme de fonctions dérivables et on a:

$$g'_{n}(x) = (x + e^{-nx})' = 1 - ne^{-nx} \quad alors : g'_{n}(x) \ge 0 \Leftrightarrow 1 - ne^{-nx} \ge 0$$

$$\Leftrightarrow ne^{-nx} \le 1$$

$$\Leftrightarrow e^{-nx} \le \frac{1}{n}$$

$$\Leftrightarrow -nx \le \ln \frac{1}{n}$$

$$\Leftrightarrow x \ge \frac{\ln n}{n}$$

c'est-à-dire que : si $x \in \left[\frac{\ln n}{n}; +\infty\right[$ la fonction g_n est croissante ; si $x \in \left]-\infty; \frac{\ln n}{n}\right]$ la fonction g_n est décroissante .

b) Montrer que g_n admet un minimum en un nombre réel u_n qu'on déterminera en fonction de n.

La fonction
$$g_n$$
 est croissante sur $\left\lceil \frac{\ln n}{n}; +\infty \right\rceil$.

Donc pour tout
$$x \in \left[\frac{\ln n}{n}; +\infty\right]$$
 on $a: g_n(x) \ge g_n\left(\frac{\ln n}{n}\right)$

La fonction
$$g_n$$
 est décroissante sur $-\infty$; $\frac{\ln n}{n}$.

Donc pour tout
$$x \in \left] -\infty; \frac{\ln n}{n} \right]$$
; on a: $g_n(x) \ge g_n\left(\frac{\ln n}{n}\right)$

On déduit que :
$$g_n(x) \ge g_n\left(\frac{\ln n}{n}\right)$$
 pour tout $x \in \mathbb{R}$.

C'est-à-dire que
$$g_n$$
 admet un minimum en un nombre réel $u_n = \frac{\ln n}{n}$ et $g_n(u_n) = \frac{\ln(n) + 1}{n}$.

2) a) Calculer $\lim_{n \to \infty} g_n(x)$ et $\lim_{n \to \infty} g_n(x)$

Donc:
$$\lim_{x\to -\infty} g_n(x) = +\infty$$

Donc:
$$\lim_{n \to \infty} g_n(x) = +\infty$$

b) Déterminer les branches infinies de la courbe $\left(C_{_{n}} ight) .$

$$\blacksquare On a: \lim_{x \to +\infty} g_n(x) = +\infty$$

$$Et \lim_{x \to +\infty} \frac{g_n(x)}{x} = \lim_{x \to +\infty} \frac{x + e^{-nx}}{x} = \lim_{x \to +\infty} \left(1 + \frac{e^{-nx}}{x}\right) = 1 \left(car \lim_{x \to +\infty} e^{-nx} = \lim_{t \to -\infty} e^t = 0 \text{ et } \lim_{x \to +\infty} \left(\frac{1}{x}\right) = 0\right)$$

De plus:
$$\lim_{x \to +\infty} (g_n(x) - x) = \lim_{x \to +\infty} (x + e^{-nx}) = \lim_{x \to +\infty} (e^{-nx}) = 0$$

Par suite la courbe (C_n) admet la droite d'équation y = x comme asymptote oblique au voisinage de $+\infty$

 \blacksquare On $a: \lim_{x\to\infty} g_n(x) = +\infty$

$$Et \lim_{x \to -\infty} \frac{g_n(x)}{x} = \lim_{x \to -\infty} \frac{x + e^{-nx}}{x} = \lim_{x \to -\infty} \left(1 - n\frac{e^{-nx}}{-nx}\right) = -\infty \quad (car \lim_{x \to -\infty} \frac{e^{-nx}}{-nx} = \lim_{t \to +\infty} \frac{e^t}{t} = +\infty)$$

On déduit que la courbe $\left(C_{_n}
ight)$ admet au voisinage de $-\infty$ une branche parabolique de direction l'axe des ordonnées.

3) a) Etudier les positions relatives $des(C_1)$ et (C_2) courbes représentatives des fonctions g_1 et g_2

Pour étudier les positions relatives des courbes (C_1) et (C_2) , on va étudier le signe de la différence :

$$g_2(x) - g_1(x)$$
.

Pour tout
$$x \in \mathbb{R}$$
; on $a : g_2(x) - g_1(x) = x + e^{-2x} - x - e^{-x}$

$$=e^{-x}\left(e^{-x}-1\right)$$

$$\blacksquare On \ a: \ e^{-x} - 1 \ge 0 \Leftrightarrow e^{-x} \ge 1$$

$$\Leftrightarrow -x \ge 0$$

$$\Leftrightarrow x \le 0$$

Si $x \le 0$ alors $g_2(x) - g_1(x) \ge 0$; par suite (C_2) est au-dessus de (C_1) .

$$\blacksquare$$
 On $a: e^{-x} - 1 \le 0 \Leftrightarrow e^{-x} \le 1$

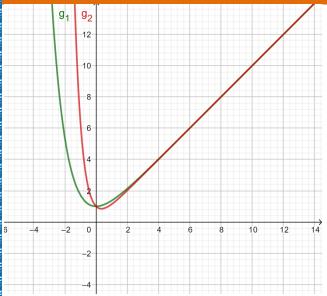
$$\Leftrightarrow -x \leq 0$$

$$\Leftrightarrow x \ge 0$$

Si $x \ge 0$ alors $g_2(x) - g_1(x) \le 0$; par suite (C_2) est au-dessous de (C_1) .

$\blacksquare(C_1)$ et (C_2) se coupent au point (0;1)

b) Tracer dans le même repère les courbes $\left(\mathit{C}_{_{1}} ight)$ et $\left(\mathit{C}_{_{2}} ight)$



4) On pose: $v_n = g_n(u_n)$ montrer que les deux suites (u_n) et (v_n) sont convergentes et déterminer leurs limites.

<u>www.guessmaths.co</u> <u>E-mail</u> : <u>abdelaliguessouma@gmail.com</u> <u>w</u>

On
$$a: u_n = \frac{\ln n}{n}$$
 et $v_n = g_n(u_n) = \frac{\ln(n) + 1}{n}$ Puisque: $\lim_{n \to +\infty} \frac{\ln n}{n} = 0$ et $\lim_{n \to +\infty} \frac{\ln(n) + 1}{n} = 0$ alors les deux suites (u_n) et (v_n) Sont convergentes et on $a: \lim_{n \to +\infty} u_n = \lim_{n \to +\infty} v_n = 0$.

Partie II

On considère la fonction
$$f_n$$
 définie sur $\left]-\infty; -\frac{1}{2}\right[par: f_n(x) = x + e^{nx}]$.

tet soit $\left(\Gamma_{_{n}}
ight)$ sa courbe représentative dans un repère orthonormé $\left(O; ec{i}; ec{j}
ight)$.

(1) a) Etudier les variations de f_n .

La fonction f_n est dérivable sur $\mathbb R$ comme somme de fonctions dérivables sur $\mathbb R$ et on a pour tout sur

$$x \in \mathbb{R}$$
: $f'_n(x) = (x + e^{nx})' = 1 + ne^{nx}$

On $a: 1+ne^{nx} > 0$ pour tout $x \in \mathbb{R}$.

Donc: $f_n'(x) > 0$ pour tout $x \in \mathbb{R}$, c'est-à-dire que f_n est strictement croissante sur \mathbb{R} .

48		
44	х	
		+∞
		+
	f_n	-∞ +∞

b) Déduire que l'équation : $f_n(x) = 0$ admet une solution unique α_n dans ${\mathbb R}$.

La fonction f_n est continue et strictement croissante sur $\mathbb R$ et on $a:f_n(\mathbb R)=\mathbb R$.

Puisque: $0 \in f_n(\mathbb{R})$ alors l'équation $f_n(x) = 0$ admet une solution unique α_n dans \mathbb{R} .

2) a) Montrer que :
$$\alpha_1 \in \left[-\ln 2; -\frac{1}{2} \right]$$

L'équation : $f_1(x) = 0$ admet une solution unique α_1 dans \mathbb{R} .

Puisque:
$$f_1(-\ln 2) = \frac{1}{2} - \ln 2$$
 et $f_1(-\frac{1}{2}) = \frac{2 - \sqrt{e}}{2\sqrt{e}}$ alors $f_1(-\ln 2) \times f_1(-\frac{1}{2}) < 0$.

$$Donc: \alpha_1 \in \left] -\ln 2; -\frac{1}{2} \right[$$

b) Montrer que
$$(x-\alpha_1)$$
 et $(e^x+\alpha_1)$ ont le même signe.

On
$$a$$
: $f_1(\alpha_1) = 0$ donc: $\alpha_1 + e^{\alpha_1} = 0$

$$D'ou: \alpha_1 = -e^{\alpha_1}$$
.

La fonction Exp est strictement croissante sur ${
m I\!R}\,$, donc:

$$\blacksquare$$
 Si $x > \alpha_1$ alors $e^x > e^{\alpha_1}$ et $x - \alpha_1 > 0$

$$Donc e^x - e^{\alpha_1} > 0$$

$$D'où: e^x + \alpha_1 > 0$$

■ Si
$$x < \alpha_1$$
 alors $e^x < e^{\alpha_1}$ et $x - \alpha_1 < 0$

$$Donc e^x - e^{\alpha_1} < 0$$

$$D'où: e^x + \alpha_1 < 0$$

Par suite
$$(x-\alpha_1)$$
 et $(e^x+\alpha_1)$ ont le même signe.

3) Soit
$$\varphi$$
 la fonction définie sur $\left[-\infty; -\frac{1}{2}\right]$ par : $\varphi(x) = e^x - \frac{1}{\sqrt{e}}x$

a) Montrer que la fonction
$$\varphi$$
 est décroissante sur $-\infty; -\frac{1}{2}$

La fonction φ est dérivable sur $\left[-\infty; -\frac{1}{2}\right]$ et on a pour tout $x \in \left[-\infty; -\frac{1}{2}\right]$:

$$\varphi'(x) = \left(e^x - \frac{1}{\sqrt{e}}x\right)' = e^x - \frac{1}{\sqrt{e}}$$

Comme
$$x \le -\frac{1}{2}$$
 alors $e^x \le \frac{1}{\sqrt{e}}$

C'est-à-dire
$$e^x - \frac{1}{\sqrt{e}} \le 0$$

$$\varphi'(x) \le 0$$
 pour tout $x \in \left] -\infty; -\frac{1}{2} \right]$.

On déduit que la fonction φ est décroissante sur $\left|-\infty; -\frac{1}{2}\right|$.

b) Déduire que :
$$\left| e^x + \alpha_1 \right| \le \frac{1}{\sqrt{e}} \left| x - \alpha_1 \right|$$
 pour tout $x \in \left] -\infty; -\frac{1}{2} \right]$

$$\varphi$$
 est décroissante sur $\left[-\infty; -\frac{1}{2}\right]$ et $\alpha_1 \in \left[-\ln 2; -\frac{1}{2}\right]$; alors $(x-\alpha_1)$ et $(\varphi(x)-\varphi(\alpha_1))$.

Et
$$\varphi(x) - \varphi(\alpha_1) = e^x - \frac{1}{\sqrt{e}}x - e^{\alpha_1} + \frac{1}{\sqrt{e}}\alpha_1$$
 de plus : $\alpha_1 = -e^{\alpha_1}$; d'où :

$$\frac{\varphi(x) - \varphi(\alpha_1)}{x - \alpha_1} = \frac{e^x + \alpha_1}{x - \alpha_1} - \frac{1}{\sqrt{e}} \le 0$$

Par suite
$$\left| e^x + \alpha_1 \right| \le \frac{1}{\sqrt{e}} \left| x - \alpha_1 \right|$$
 pour tout $x \in \left[-\infty; -\frac{1}{2} \right]$.

4) On pose:
$$\beta_0 = -\frac{1}{2}$$
 et $\beta_{n+1} = -e^{\beta_n}$ pour tout $n \in \mathbb{N}$.

a) Montrer qu'il existe un réel a tel que:
$$(\forall n \in \mathbb{N})$$
; $|\beta_{n+1} - \alpha_1| \le a |\beta_n - \alpha_1|$.

Montrons par récurrence que :
$$(\forall n \in \mathbb{N})$$
; $-\ln 2 \le \beta_n \le -\frac{1}{2}$

Pour
$$n=0$$

$$On \ a: \beta_0 = -\frac{1}{2} \ donc: -\ln 2 \le \beta_0 \le -\frac{1}{2}$$

Soit $n \in IN$

Supposons que
$$-\ln 2 \le \beta_n \le -\frac{1}{2}$$
 et montrons que : $-\ln 2 \le \beta_n \le -\frac{1}{2}$.

$$-\ln 2 \le \beta_n \le -\frac{1}{2} \Rightarrow e^{-\ln 2} \le e^{\beta_n} \le e^{-\frac{1}{2}}$$
$$\Rightarrow \frac{1}{2} \le -\beta_{n+1} \le \frac{1}{\sqrt{e}}$$
$$\Rightarrow -\frac{1}{\sqrt{e}} \le \beta_{n+1} \le -\frac{1}{2}$$

Comme
$$-\ln 2 \le -\frac{1}{\sqrt{e}}$$
; alors: $-\ln 2 \le \beta_{n+1} \le -\frac{1}{2}$.

Conclusion

On $a: -\ln 2 \le \beta_n \le -\frac{1}{2}$ pour tout $n \in \mathbb{N}$.

D'après la question précédente: $\left|e^{\beta_n} + \alpha_1\right| \leq \frac{1}{\sqrt{e}} \left|\beta_n - \alpha_1\right| \; ; \; car \; \beta_n \in \left] -\infty; -\frac{1}{2} \left[\beta_n - \alpha_1\right] \; ; \; car \; \beta_n \in \left[-\infty; -\frac{1}{2}\right]$

 $C'est-\grave{a}-dire: \left|-\beta_{n+1}+\alpha_1\right| \leq \frac{1}{\sqrt{e}}\left|\beta_n-\alpha_1\right|$

On déduite que : $|\beta_{n+1} - \alpha_1| \le \frac{1}{\sqrt{e}} |\beta_n - \alpha_1|$ pour tout $n \in \mathbb{N}$.

Donc le réel cherché est $a = \frac{1}{\sqrt{e}}$.

b) Montrer que la suite (β_n) est convergente et déterminer sa limite.

On a pour tout $n \in \mathbb{N}$: $\left| \beta_n - \alpha_1 \right| \le \frac{1}{\sqrt{e}} \left| \beta_{n-1} - \alpha_1 \right|$

$$Donc: \begin{cases} |\beta_{n} - \alpha_{1}| \leq \frac{1}{\sqrt{e}} |\beta_{n-1} - \alpha_{1}| \\ |\beta_{n-1} - \alpha_{1}| \leq \frac{1}{\sqrt{e}} |\beta_{n-2} - \alpha_{1}| \\ \vdots \\ |\beta_{2} - \alpha_{1}| \leq \frac{1}{\sqrt{e}} |\beta_{1} - \alpha_{1}| \\ |\beta_{1} - \alpha_{1}| \leq \frac{1}{\sqrt{e}} |\beta_{0} - \alpha_{1}| \end{cases}$$

En multipliant les termes de ces inégalités on obtient : $\left|\beta_n - \alpha_1\right| \le \left(\frac{1}{\sqrt{e}}\right)^n \left|\beta_0 - \alpha_1\right|$

$$Or \lim_{n \to +\infty} \left(\frac{1}{\sqrt{e}} \right)^n = 0 ; car -1 < \frac{1}{\sqrt{e}} < 1.$$

On en déduit que la suite (β_n) est convergente et que : $\lim_{n\to+\infty}\beta_n=\alpha_1$.