Série nº 7 exercices « Etude de fonction exponentielle » 2éme Bac SM

EXERCICE 1

Soit f la fonction définie sur \mathbb{R} par : $f(x) = x - e^{-x}$

- 1) Montrer que l'équation f(x) = 0 admet une seule solution α dans l'intervalle $\frac{1}{e}$, 1
- 2) Soit (u_n) la suite définie par : $u_0 \in \left] \frac{1}{e}, 1 \right[et (\forall n \in \mathbb{N}) : u_{n+1} = e^{-u_n}$
 - a) Montrer que : $(\forall n \in \mathbb{N})$: $u_n \in \left]\frac{1}{e}, 1\right[$
 - b) Montrer que : $(\forall n \in \mathbb{N}): |u_{n+1} \alpha| < e^{\frac{-1}{e}} |u_n \alpha|$
 - c) Déduire $\lim u_n$
- 3) Pour tout $n \in \mathbb{N}^*$, on pose: $v_n = \prod_{k=1}^n u_k$

Montrer que : $v_n = e^{-\sum_{k=0}^{n-1} u_k}$ et en déduire $\lim v_n$

EXERCICE 2

On considère les fonctions ch et sh définies par $: ch(x) = \frac{e^x + e^{-x}}{2}$ et $sh(x) = \frac{e^x - e^{-x}}{2}$

- 1) Montrer que : $(\forall x \in \mathbb{R})$: sh'(x) = ch(x) et ch'(x) = sh(x) puis donner le tableau de variation des fonctions ch et sh
- 2) a) Montrer que : $(\forall x \in \mathbb{R})$: $ch^2(x) sh^2(x) = 1$
 - b) Montrer que : $(\forall (a,b) \in \mathbb{R}^2)$: ch(a+b) = ch(a)ch(b) + sh(a)sh(b) et

sh(a+b) = sh(a)ch(b) + ch(a)sh(b) puis déduire ch(2a) et sh(2a) en fonction de ch(a) et sh(a)

- $\it 3)$ a) Montrer que la fonction $\it sh$ admet une fonction réciproque $\it sh^{-1}$
 - b) Montrer que sh^{-1} est dérivable sur \mathbb{R} et que : $(sh^{-1})'(x) = \frac{1}{\sqrt{1+x^2}}$
 - c) Montrer que: $(\forall x \in \mathbb{R})$: $sh^{-1}(x) = \ln(x + \sqrt{1 + x^2})$
- 4) Soit f la restriction de la fonction ch $\grave{\mathsf{a}} \mathbb{R}^+.$
 - a) Montrer que f est bijective de \mathbb{R}^+ vers $[1,+\infty[$.
 - b) Montrer que f^{-1} est dérivable sur $]1,+\infty[$ et que $:(\forall x \in]1,+\infty[):(f^{-1})'(x)=\frac{1}{\sqrt{x^2-1}}$
 - c) Montrer que : $(\forall x \in [1, +\infty[): (f^{-1})(x) = \ln(x + \sqrt{x^2 1}))$

soit f la fonction numérique définie sur
$$\mathbb{R}^+$$
 par :
$$\begin{cases} f(x) = x^{\frac{x+1}{x}} \\ f(0) = 0 \end{cases}$$
; $x > 0$

- (C) est la courbe de f dans un repère orthonormé (O,\vec{i},\vec{j})
- 1) Étudier la continuité de f à droite en 0
- 2) Étudier la dérivabilité de f à droite en 0 et interpréter graphiquement le résultat trouvé
- 3) Calculer $\lim_{x\to +\infty} f(x)$, puis étudier la branche infinie de la courbe (C) en $+\infty$
- 4) Soit g la fonction définie sur $]0,+\infty[$ par : $g(x)=1+x-\ln x$ Étudier les variations de g puis déduire le signe de g(x)
- 5) Montrer que : $(\forall x \in]0, +\infty[)$: $f'(x) = \frac{g(x)}{r^2} f(x)$ puis donner le tableau de variation de f.
- 6) construire la courbe (C)

EXERCICE 4

Partie A

Soit g la fonction définie sur \mathbb{R}^+ par : $\begin{cases} g(x) = \frac{1 - e^{-x}}{x} ; x > 0 \\ g(0) = 1 \end{cases}$ 1) Montrer que g est continue à droite en 0

- 2) Soit h la fonction définie sur \mathbb{R}^+ par : h(x) = 1 x +

 - a) Montrer que : $(\forall x \in \mathbb{R}^+): 0 \le h''(x) \le x$ b) En déduire que : $(\forall x \in \mathbb{R}^+): 0 \le h(x) \le \frac{x^3}{6}$
 - c) En déduire que la fonction g est dérivable à droite en 0

Partie B

Soit f la fonction numérique définie sur \mathbb{R}^+ par : $\begin{cases} f(x) = \frac{e^{-x} - e^{-2x}}{x} & ; x > 0 \\ f(0) = 1 \end{cases}$

- 1) Montrer que : $(\forall x \in \mathbb{R}_+^*)$: $f'(x) \le 0$
- 2) a-Vérifier que : $(\forall x \in \mathbb{R}^+)$: f(x) = 2g(2x) g(x)
 - b- En déduire que f est dérivable à droite en 0
- 3) Donner le tableau de variation de f
- 4) Construire la courbe (C) de f dans un repère orthonormé (O, i, j).

EXERCICE 5

Soit $n \in \mathbb{N}$ avec $n \ge 2$ et soit f_n la fonction numérique définie sur \mathbb{R} par : $f_n(x) = \frac{x}{n} - e^{-nx}$

- (C_n) est la courbe de f_n dans un repère orthonormé (O, \vec{i}, \vec{j}) .
- 1) a) Calculer $\lim_{n \to \infty} f_n(x)$ et $\lim_{n \to \infty} f_n(x)$

- b) Étudier les branches infinies de la courbe (C_n)
- 2) Calculer $f_n(x)$ pour tout $x \in \mathbb{R}$ puis dresser le tableau de variation de f_n
- 3) a) Montrer que l'équation $f_n(x) = 0$ admet une seule solution α_n dans \mathbb{R}
 - b) Montrer que: $f_n\left(\frac{1}{n}\right) < 0$
 - c) Montrer que : $(\forall x \in \mathbb{R})$: $e^x \ge x+1$, puis en déduire que $f_n(1) > 0$.
- 3) Montrer que : $\frac{1}{n} < \alpha_n < 1$
- 4) Construire la courbe (C_n) (on prend $\alpha_n \simeq 0.6$
- 5) a-Montrer que : $(\forall n \ge 2)$: $f_{n+1}(\alpha_n) = \frac{ne^{-(n+1)\alpha_n}}{n+1} \left(e^{\alpha_n} \frac{1}{n} 1\right)$
 - *b- En déduire que* : $(\forall n \ge 2)$: $f_{n+1}(\alpha_n) \ge 0$
 - c-Montrer que la suite (α_n) est convergente
- 6) a-Montrer que $(\forall n \ge 2)$: $\frac{1}{n^2} < e^{-n \alpha_n} < \frac{1}{n}$
 - b- déduire que : $(\forall n \ge 2)$: $\frac{\ln(n)}{n} < \alpha_n < \frac{2\ln(n)}{n}$
 - *c- calculer* $\lim \alpha_n$

