Exercice 1

On considère la suite numérique
$$\left(u_{n}\right)_{n\in\mathbb{N}}$$
 définie par :
$$\begin{cases} u_{0}=6\\ u_{n+1}=\frac{1}{5}u_{n}+\frac{2}{5} \end{cases} ; (\forall n\in\mathbb{N})$$

- 1. a) Calculer u_1 et u_2
 - b) Montrer par récurrence que pour tout $n \in \mathbb{N}$: $u_n > \frac{1}{2}$
 - c) Vérifier que pour tout $n \in \mathbb{N}$: $u_{n+1} u_n = \frac{4}{5} \left(\frac{1}{2} u_n \right)$
 - d) En déduire que $(u_n)_{n\in\mathbb{N}}$ est décroissante et qu'elle est convergente.
- 2. On pose pour tout $n \in \mathbb{N}$: $V_n = u_n \frac{1}{2}$
 - a) Montrer que $\left(V_{n}\right)_{n\in\mathbb{N}}$ est une suite géométrique en précisant sa raison.
 - b) Calculer son premier terme V_0
 - c) Calculer V_n en fonction de n et en déduire que pour tout $n \in \mathbb{N}$: $u_n = \frac{1}{2} \left(11 \left(\frac{1}{5} \right)^n + 1 \right)$
 - d) Calculer $\lim_{n\to +\infty} u_n$
- 3. On pose $S_n = u_0 + u_1 + u_2 + \dots + u_{n-1}$ Montrer que $S_n = \frac{55}{8} \left(1 \left(\frac{1}{5} \right)^n \right) + \frac{n}{2}$, puis calculer la limite de S_n

Exercice 2 (National 2021)

$$Soit \left(u_{n}\right)_{n \in \mathbb{N}} \text{ la suite numérique définie par : } \begin{cases} u_{0} = \frac{1}{2} \\ u_{n+1} = \frac{u_{n}}{3 - 2u_{n}} \end{cases}; (\forall n \in \mathbb{N})$$

- 1. Calculer u_0
- 2. Montrer par récurrence que pour tout $n \in \mathbb{N}$: $0 < u_n \le \frac{1}{2}$

www.guessmaths.co E-mail: abdelaliguessouma@gmail.com WhatsApp: 0717467136

- 3. a) Montrer que pour tout $n \in \mathbb{N}$: $\frac{u_{n+1}}{u_n} \le \frac{1}{2}$
 - b) En déduire la monotonie de la suite $(u_n)_{n\in\mathbb{N}}$
- 4. a) Montrer que pour tout $n \in \mathbb{N}$: $0 < u_n \le \left(\frac{1}{2}\right)^{n+1}$; puis calculer la limite de la suite $\left(u_n\right)_{n \in \mathbb{N}}$
 - b) On pose $V_n = \ln(3 2u_n)$ pour tout $n \in \mathbb{N}$, calcular $\lim_{n \to +\infty} V_n$
- 5. a) Vérifier que pour tout $n \in \mathbb{N}$, $\frac{1}{1+a_{n+1}}-1=3\left(\frac{1}{a_n}-1\right)$
 - b) En déduire u_n en fonction de n pour tout $n \in \mathbb{N}$

Exercice 3

Soit f la fonction définie sur [1;2] par : $f(x) = \frac{2x+1}{x+1}$

- 1. Étudier les variations de f sur [1;2]; puis montrer que $f([1;2]) \subset [1;2]$.
- 2. On considère la suite (u_n) définie par : $\begin{cases} u_0 = 1 \\ u_{n+1} = f(u_n) \end{cases} ; (\forall n \in \mathbb{N}).$
 - a) Montrer que : $(\forall n \in \mathbb{N})$; $1 \le u_n \le 2$
 - b) Calculer u_1 ; puis montrer que (u_n) est croissante
 - c) En déduire que (u_n) est convergente ; puis calculer $\lim_{n\to +\infty} u_n$

Exercice 4

Soit f la fonction définie par : $f(x) = x - \sqrt{x} + \frac{1}{\sqrt{x}}$

Et (C_f) sa courbe représentative dans un repère orthonormé $(O;\vec{i}\;;\vec{j}\;)$

- 1. Déterminer D_f , puis calculer $\lim_{x\to 0^+} f(x)$ et interpréter le résultat géométriquement.
- 2. Calculer $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to +\infty} \frac{f(x)}{x}$ x et $\lim_{x \to +\infty} f(x) x$, puis interpréter géométriquement le résultat.
- 3. Étudier la position relative de (C_f) et la droite (Δ) : y = x

<u>www.guessmaths.co</u> <u>E-mail</u>: <u>abdelaliguessouma@gmail.com</u> <u>WhatsApp</u>: 0717467136

4. a) Montrer que pour tout
$$x > 0$$
: $f'(x) = \frac{(2x + \sqrt{x} + 1)(x - 1)}{2x\sqrt{x}(\sqrt{x} + 1)}$, puis donner le signe de $f'(x)$.

- b) Dresser le tableau de variation de f.
- c) Tracer la droite (Δ) et la courbe (C_f) dans le repère orthonormé $(O;\vec{i};\vec{j})$

5. On considère la suite
$$(a_n)$$
 définie par :
$$\begin{cases} a_0 = 2 \\ a_{n+1} = f(a_n) \end{cases}$$
; $(\forall n \in \mathbb{N})$

- a) Montrer que pour tout entier naturel n : $a_n > 1$
- b) Montrer que la suite (a_n) est une suite décroissante
- c) En déduire que (a_n) est une suite convergente et calculer $\lim_{n\to +\infty} a_n$

Exercice 5

Partie A

Soit f la fonction définie par :
$$f(x) = \frac{x}{\sqrt{4-x}}$$

Et (C_f) sa courbe représentative dans un repère orthonormé $(O;\vec{i};\vec{j})$

- 1. Montrer que $\mathcal{D}_f =]-\infty;4[$
- 2. Calculer $\lim_{x \to -\infty} f(x) = \lim_{x \to 4^-} f(x)$.
- 3. Étudier les branches infinies de (C_f) .

4. a) Montrer que f est dérivable sur
$$]-\infty; 4[$$
 et que : $f'(x) = \frac{8-x}{2(\sqrt{4-x})^3}$

b) Dresser le tableau de variation de f.

5. a) Vérifier que pour tout
$$x < 4$$
: $f(x) - x = \frac{x(x-3)}{\sqrt{4-x}(1+\sqrt{4-x})}$

- b) En déduire que: $\forall x \in [0;3]$; $f(x) \le x$
- 6. Tracer la courbe de f dans le repère orthonormé $(0; \vec{i}; \vec{j})$.

Partie B

On considère la suite
$$(u_n)$$
 définie par :
$$\begin{cases} u_0 = 1 \\ u_{n+1} = f(u_n) \end{cases} ; (\forall n \in \mathbb{N})$$

<u>www.guessmaths.co</u> <u>E-mail</u>: <u>abdelaliguessouma@gmail.com</u> <u>WhatsApp</u>: 0717467136

1. Montrer que : $(\forall n \in \mathbb{N})$; $0 \le u_n \le 3$

2. Étudier la monotonie de la suite $\left(u_{_{n}}
ight)$

3. Montrer que (u_n) est une suite convergente ; puis calculer $\lim_{n\to +\infty} u_n$

<u>Exercice 6</u>

On considère la suite (u_n) définie par : $\begin{cases} u_1 = -5 \\ u_{n+1} = \frac{-5u_n - 9}{1 + u_n} \end{cases} ; (\forall n \in \mathbb{N}^*)$

1. Montrer que $(\forall n \in \mathbb{N}^*)$; $u_n < 3$

2. a) Montrer que :
$$(\forall n \in \mathbb{N}^*)$$
; $u_{n+1} - u_n = \frac{(3 + u_n)^2}{1 + u_n}$

b) En déduire la monotonie de la suite (u_n)

c) Montrer que (u_n) est une suite convergente

3. On pose pour tout
$$n \in \mathbb{N}^*$$
: $V_n = \frac{u_n - 1}{u_n + 3}$

a) Montrer que (v_n) est une suite arithmétique de raison r=2

b) Écrire V, en fonction de n.

c) En déduire que
$$u_n = -\frac{2+3n}{n}$$
; $(\forall n \in \mathbb{N}^*)$; puis calculer $\lim_{n \to +\infty} u_n$

4. On pose
$$S_n = \frac{1}{u_0 + 3} + \frac{1}{u_1 + 3} + \frac{1}{u_2 + 3} + \dots + \frac{1}{u_n + 3}$$
; pour tout $n \in \mathbb{N}^*$

a) Écrire S, en fonction de n.

b) Calculer $\lim_{n\to+\infty} S_n$

<u>www.guessmaths.co</u> <u>E-mail</u>: <u>abdelaliguessouma@gmail.com</u> <u>WhatsApp</u>: 0717467136