

## Devoir surveillé n°4

2éme Bac PC-SVT

# **Exercice 1:** (3,5 Pts)

- **I**) Considérons la suite  $(v_n)$  définie par :  $v_n = \frac{5^{n+1}}{6^n}$  pour tout  $n \in \mathbb{N}$ .
- 1- Montrer que  $(v_n)$  est une suite géométrique dont on précisera la raison et le premier terme.
- 2) calculer la limite de la suite  $(v_n)$
- II) Considérons la suite  $(u_n)$  définie par :  $\begin{cases} u_0 = 1 \\ u_{n+1} = \sqrt{5u_n + 6} \end{cases}$  pour tout  $n \in \mathbb{N}$ .
- 1) Montrer que :  $1 \le u_n \le 6$  pour tout  $n \in \mathbb{N}$ .
- 2) Montrer que  $(u_n)$  est croissante.
- 3) a- Montrer que pour tout  $n \in \mathbb{N}$ :  $6 u_{n+1} \le \frac{5}{6} (6 u_n)$ . b- En déduire que pour tout  $n \in \mathbb{N}$ :  $0 \le 6 - u_n \le v_n$ , et Calculer la limite de la suite  $(u_n)$

# **Exercice 2**: (4,5 Pts)

- 1) On considère dans l'ensemble C le polynôme suivant :  $P(z) = z^3 12z^2 + 48z 72$ .
- 1) Montrer que : z = 6 est solution de l'équation P(z) = 0.
- 2) a- Déterminer les nombres réels a et b tel que  $P(z) = (z-6)(z^2 + az + b)$  pour tout  $z \in \mathbb{C}$ . b- En déduire dans  $\mathbb{C}$  les solutions de l'équation P(z) = 0.
- 3) Le plan complexe muni d'un repère orthonormé direct $(O; \vec{u}; \vec{v})$ ; On considère les points A
- et B et C et A' et E d'affixes respectives; a=6;  $b=3+i\sqrt{3}$ ;  $c=2\sqrt{3}e^{-i\frac{\pi}{6}}$ ; a'=1+i et  $e=2i\sqrt{3}$ .

a-Montrer que : 
$$\frac{b}{a'} = \frac{3+\sqrt{3}}{2} + i\frac{\sqrt{3}-3}{2}$$

- b-Monter que :  $\frac{b}{a'} = 2\sqrt{\frac{3}{2}}e^{-i\frac{\pi}{12}}$  et en déduire la valeur de  $\sin\left(-\frac{\pi}{12}\right)$
- c- Ecrire  $\left(\frac{b}{a'}\right)^3$  sous la forme algébrique.
- 4) a- Calculer  $\frac{a-b}{a-c}$  et en déduire la mesure d'angle  $\left(\overrightarrow{CA};\overrightarrow{BA}\right)$ 
  - b- En déduire la nature de triangle ABC.
- 5) Soit z l'affixe d'un point M et z' l'affixe d'un point M' l'image de M par la rotation R de centre C et d'angle  $\frac{\pi}{2}$

<u>www.guessmaths.co</u> <u>E-mail</u>: <u>abdelaliguessouma@gmail.com</u> <u>whatsapp</u>: 060448889

a-Monter que:  $z' = iz + 3 - \sqrt{3} - i(3 + \sqrt{3})$ 

b-Déterminer l'image de point E par la rotation R

6) Monter les points A et B et E sont alignés.

# Exercice 3:(9 Pts)

- *I)* Soit u la fonction numérique définie sur  $[0;+\infty[$  par:  $u(x)=e^x-3x+4-e$
- 1) Montrer que :  $u'(x) = e^x 3$  pour tout x de  $]0; +\infty[$  ; puis dresser le tableau de variation de u.
- 2) a- Montrer que: u(x) > 0 pour tout x de  $]0;+\infty[$ . b- En déduire que:  $e^x - e > 3x - 4$  pour tout de  $]0;+\infty[$ .
- II) Soit v la fonction numérique définie sur  $]0;+\infty[$  par :  $v(x) = -3x^3 + 4x^2 1 + \ln x$
- 1) a- Vérifier que :  $-9x^2 x 1 < 0$  pour tout  $x de \mathbb{R}^+$ . b- Vérifier que :  $-9x^3 + 8x^2 + 1 = (x-1)(-9x^2 - x - 1)$  pour tout  $x de \mathbb{R}^+$ .
- 2) a- Calculer v'(x) puis dresser le tableau de variation de v et en déduire que  $v(x) \le 0$  pour tout x de  $[0; +\infty[$ .
  - b- En déduire que :  $\frac{-1 + \ln x}{x^2} \le 3x 4 pour tout x de \ ]0; +\infty[$
- 3) Montrer que :  $e^x e + \frac{1 \ln x}{x^2} > 0$  pour tout x de  $]0; +\infty[$
- **III**) Soit f la fonction numérique définie sur  $]0; +\infty[$  par:  $f(x) = e^x ex + \frac{\ln x}{x}$
- 1) Calculer  $\lim_{x\to 0^+} f(x)$  et interpréter le résultat géométriquement.
- 2) Montrer que  $\lim_{x \to +\infty} f(x) = +\infty$  et que  $\lim_{x \to +\infty} \frac{f(x)}{x} = +\infty$  puis donner l'interprétation géométrique.
- 3) a- Calculer la dérive de la fonction f et en déduire que la fonction f est strictement croissante sur ]0;+∞[
  - b- Dresser le tableau de variation de la fonction f
- 4) Montrer que l'équation f(x) = 0 admet une solution unique sur  $]0; +\infty[$  tel que  $: \frac{1}{2} < \alpha < \frac{3}{2}$
- 5) Tracer (C) la courbe de f dans une repère orthonormé $\left(O;ec{i}\;;ec{j}
  ight)$  .(unité 1 cm)
- 6) a-Montrer que la fonction f admet une fonction réciproque  $f^{-1}$  définie sur un intervalle J à déterminer
  - b- Dresser le tableau de variation  $f^{-1}$  sur l'intervalle J
  - c-Calculer f(1) puis montrer que  $f^{-1}$  est dérivable en 0 et déterminer  $(f^{-1})'(0)$

# Exercice 4:(3 Pts)

1) Soit f la fonction définie par :  $f(x) = x \ln(x+1)$  et l'intégrale  $I = \int_0^1 x \ln(x+1) dx$ www.guessmaths.co <u>E-mail</u>: <u>abdelaliguessouma@gmail.com</u> <u>whatsapp</u>: 0604488896 a- Vérifier que  $0 \le x \ln(x+1) \le \ln 2$  pour tout x de [0;1]

*b- En déduire*  $0 \le I \le \ln 2$ 

2) a-Montrer que :  $\frac{x^3}{x^2+1} = x - \frac{x}{x^2+1}$  pour tout  $x de \mathbb{R}$ 

*b- En déduire*  $\int_0^1 \frac{x^3}{x^2 + 1} dx = \frac{1}{2} - \ln \sqrt{2}$ 

c- En utilisant une intégration par partie, calculer  $\int_0^1 2x \ln(x^2+1) dx$ 



<u>www.guessmaths.co</u> <u>E-mail</u>: <u>abdelaliguessouma@gmail.com</u> <u>whatsapp</u>: 0604488896