Essentiel du Cours : Les notions de Logiques

1ére Bac S.EX

Année Scolaire: 2021-2022

1. Proportions - fonction propositionnelle

<u>Définition</u>

Tout énonce mathématique qui a un sens qui est soit vraie ; soit faux est une proposition. On note souvent une proportion par la lettre P;Q;R.

Exemple

P:"2+3=5" est une proposition vraie

Q:"- $2^2 = 4$ " est une proposition fausse.

 $R: \sqrt[4]{\frac{1}{4}} \ge \frac{1}{4}$ " est une proposition vraie

2) Fonction propositionnelle

Définition

On appelle fonction propositionnelle tout énonce mathématique contenant une ou plusieurs variables appartenant

à un ensemble E et qui devient une proposition à chaque fois qu'on remplace la variable (ou les variables) par un élément (on des éléments de E)

On note souvent une fonction propositionnelle par : A(x); B(x); B(x;y); B(x;y;z).....

Exemple 1) $A(x): x \in \mathbb{R}$; $x^2 - 1 = 0$

A(1) est vraie car $1^2 - 1 = 0$.

A(2) est fausse car $2^2 - 1 = 3 \neq 0$.

2) $B(x,y): x+y \ge 0$ où $x \ge 0$ et $y \le 0$

B (1,-2) est fausse car $1+(-2)=-1 \le 0$

B(4;-1) est vraie car $4+(-1)=3\geq 0$

II- Les quantificateurs

1) Quantificateur universel.

Soit A(x) une fonction propositionnelle définie sur un ensemble E

Le symbole \forall se lit « pour tout » ou « quel que soit » et est appelé quantificateur universel. Si pour tout $x \in E$ on a A(x)est vraie ; on écrit $(\forall x \in E; A(x))$

<u>whatsapp</u>: 0604488896

Exemples:

 $x \in \mathbb{R}$; $x^2 \ge 0$ " est une proposition vraie.

" $\forall x \in \mathbb{N}; \sqrt{x} \in \mathbb{N}$ " est une proposition fausse.

www.guessmaths.co

<u>E-mail</u>: <u>abdelaliguessouma@gmail.com</u>

2) Quantificateur existentiel.

Le symbole \exists se lit "il existe au moins " ou tout simplement il existe" s'il existe un élément $x \in E$ tel que A(x) est vraie s'écrit : $\exists x \in E; A(x)$

Exemples

 $\exists x \in \mathbb{R} / x^2 - x = 0$ " est vraie car $0^2 - 0 = 0$ et $1^2 - 1 = 0$

"
$$\exists x \in \mathbb{R} / x \ge x^2$$
" est vraie car pour $x = \frac{1}{10}$ on $a : \left(\frac{1}{10}\right)^2 = \frac{1}{100}$ et $\frac{1}{10} \ge \frac{1}{100}$

le symbole ∃! se lit "il existe un unique" ou "il existe un seul"

Exemple

"
$$(\exists !x \in \mathbb{R})/x^2 - 2x + 1 = 0$$
" est vraie car : $x^2 - 2x + 1 = 0$ est équivaut à $(x-1)^2 = 0$ est équivaut à $x-1=0$ donc $x=1$

On conclut que l'équation a une unique solution x = 1.

III- Operations sur les propositions

1. Négation d'une proposition

Définition

la négation de la proposition P est la proposition notée \overline{P} ou $\neg P$. si P est vraie alors \overline{P} est fausse et si P est fausse alors \overline{P} est vraie.

Table de vérité

P	$ar{P}$
Vou 1	Fou 0
Fou 0	V ou 1

Exemples

$$P: \sqrt[n]{2} + 1 \neq 0$$

$$P: "(\exists x \in E) / x^2 + x \ge 0$$

$$P: "(\forall x \in E) / x + 1 = 0 "$$

$$P: "(\exists x \in E) / x^2 = 3"$$

$$\bar{P}: \sqrt[n]{2} + 1 = 0$$

$$\bar{P}$$
: "2 \geq 3"

$$\overline{P}$$
: " $(\forall x \in E) / x^2 + x < 0$ "

$$\overline{P}$$
: " $(\exists x \in E) / x + 1 \neq 0$ "

$$\overline{P}$$
: " $(\forall x \in E) / x^2 \neq 3$ "

2) Conjonction de deux propositions.

La Conjonction de deux propositions P et Q notée "P et Q" ou " $P \wedge Q$ "est vraie si les deux propositions P et Q sont vraies.

Table de vérité

•		
$\sim P$	Q	$P \wedge Q$
× 1	1	1
$\stackrel{\scriptscriptstyle{\times}}{\scriptscriptstyle{\times}}$ 1	0	0
$\stackrel{\times}{_{\times}} 0$	1	0
$\overline{0}$	0	0

<u>www.guessmaths.co</u> <u>E-mail</u>: <u>abdelaliguessouma@gmail.com</u> <u>whatsapp</u>: 0604488896

Exemple

Soient $P: "2 \in IN"$ et $Q: "\sqrt{2} \in IN"$ alors $P \wedge Q$ est fausse car $P: "2 \in IN"$ est vraie par contre $Q: "\sqrt{2} \in IN"$ est fausse.

3) Disjonction de deux proposition

Définition

La disjonction de deux propositions P et Q est la proposition "P ou Q" ou " $P \lor Q$ " qui est vraie si au moins une des deux propositions est vraie

Table de vérité

P	Q	$P \lor Q$
1	1	1
1	0	1
0	1	1
0	0	0

4) L'implication de deux propositions

Définition:

Soient P et Q deux propositions. L'implication de Q par P notée $P \Rightarrow Q$ se lit P implique Q est vraie si P et Q sont vraies ou si P est fausse.

Table de vérité

\overline{P}	Q	$P \Rightarrow Q$
1	1	1
1	0	0
0	1	1
0	0	1

Exercice

A l'aide d'une table de vérité montrer que les propositions $P \Rightarrow Q$ et " \overline{P} ou Q " ont la même valeur de vérité.

$\stackrel{\times}{\sim} P$	Q	$ar{P}$	$P \Rightarrow Q$	\bar{P} ou Q
× 1	1			
$\stackrel{\times}{_{\!$	0			
$\stackrel{\times}{\sim} 0$	1			
$\times 0$	0			

5) <u>Equivalence de deux propositions</u>

Définition

Soient P et Q deux propositions l'équivalence de P et Q notée par $P \Leftrightarrow Q$ est la proposition qui est vraie si P et Q sont simultanément vraies ou simultanément fausses.

 $P \Leftrightarrow Q$ se lit " P équivaut à Q ".

<u>www.guessmaths.co</u> <u>E-mail</u>: <u>abdelaliguessouma@gmail.com</u> <u>whatsapp</u>: 0604488896

<u>Remarque :</u>

 $(P \Leftrightarrow Q)$ est la proposition $\lceil (P \Rightarrow Q)et(Q \Rightarrow P) \rceil$

valeur de vérité.

7 000 000 1 00 00 00 00 00 00 00 00 00 00		
P	Q	$P \Leftrightarrow Q$
× 1	1	1
× 1	0	0
× 0	1	0
$\stackrel{\times}{\sim} 0$	0	1

6) Lois de Morgan

P; Q et R trois propositions.

- $\overline{P \text{ et } Q} \Leftrightarrow \overline{P} \text{ ou } \overline{Q}$
- $\overline{P \ ou \ Q} \Leftrightarrow \overline{P} \ et \ \overline{Q}$
- $P ou (Q et R) \Leftrightarrow (P ou Q) et(P ou R)$
- P et (Q ou $R) \Leftrightarrow (P$ et Q) ou (P et R)

Exercices d'application

Donner la négation des propositions suivantes et déterminer leur valeur de vérité :

- $P: "(\exists x \in IN) / x + 1 = 0"$
- $Q: "(\exists x \in \mathbb{R}) / x(x-2) \le 0$ "
- $R: "(\forall x \in \mathbb{R}) / x^2 + 2x + 1 \ge 0"$
- $S: "(\forall x \in \mathbb{R}) / x^2 + x \ge 0"$
- $T: "(\forall x \in IN) / \sqrt{x} \in IN"$
- $U: "(\forall x \in \mathbb{R}) / x \ge 0 \text{ ou } x \le 0"$
- $V: "(\forall x \in \mathbb{R})(\exists y \in \mathbb{R}) / x \le y "$

whatsapp: 0604488896