

Série nº 3 Exercices sur « Les suites » 2éme Bac SM

EXERCICE 1:

Soit
$$(U_n)_{n \in IN^*}$$
 la suite définie par : $U_n = \frac{n}{e} + \frac{1}{e^n}$

- 1) Déterminer le sens de variation de la suite $(U_n)_{n\in\mathbb{N}^*}$.
- 2) a) Démontrer que la suite $\left(U_{_n}
 ight)_{_{n\in IN^*}}$ est la somme d'une suite arithmétique et d'une suite géométrique
 - b) En déduire la somme $S_n = \sum_{i=1}^n U_i$ en fonction de n.

EXERCICE 2:

Démontrer par récurrence sur n que : $\forall n \in IN^*, \forall x \in IR : \sin^{(n)}(x) = \sin\left(x + n\frac{\pi}{2}\right)$

 $Où \sin^{(n)}$ est la dérivée n-iéme de la fonction sinus.

EXERCICE 3:

 $Soit(U_n)_{n \in IN^*}$ la suite définie par : $U_n = \frac{ne^{n-1} + 1}{e^n}$

- 1) Déterminer le sens de variation de la suite $\left(U_{_{n}}
 ight)_{_{n\in I\!N}}$
- 2) a) Démontrer que la suite $\left(U_{_n}
 ight)_{_{n\in\mathbb{N}^*}}$, est la somme d'une suite arithmétique et d'une suite géométrique
 - b) En déduire la somme $S_n = \sum_{i=1}^n U_i$ en fonction de n.

EXERCICE 4:

Soit la suite $(U_n)_{n \in IN^*}$ définie par : $U_n = \sum_{k=1}^n \frac{1}{\sqrt{n+k}}$

- 1) Démontrer que: $\forall n \in IN^*$, $U_n \ge \sqrt{\frac{n}{2}}$
- 2) En déduire $\lim_{n\to+\infty} U_n$

EXERCICE 5:

 $Soit(U_n)_{n\geq 2}$ la suite définie par : $U_n = \frac{n^2}{n!}$

- 1) Etudier le sens de variation de la suite $\left(U_{_{n}}
 ight)_{_{n\geq2}}$
- 2) a) Démontrer que la suite $(U_n)_{n\geq 2}$ est minorée
 - b) Démontrer que : $\forall n \in IN^* \{1\}, (n-1)! \ge n$.
 - c) Déduire des questions précédentes que la suite $(U_n)_{n>2}$ est bornée
- 3) a) Déterminer une suite $\left(V_n\right)_{n\geq 2}$ convergent vers 0 et telle que : $\forall n\in IN^*-\{1\}$, $U_n\leq V_n$
 - b) En déduire que la suite $(U_n)_{n\geq 2}$ converge et déterminer $\lim_{n\to +\infty} U_n$