

Fonction exponentielle

A) <u>Définition et premières conséquences</u>. Théorème et définition

Il existe une unique fonction f dérivable sur \mathbb{R} telle que f' = f et f(0) = 1.

Cette fonction est appelée fonction exponentielle et est notée exp.

Conséquences

- La fonction expest définie dans \mathbb{R} , dérivable (donc continue) sur \mathbb{R} .
- Pour tout réel x, exp'(x) = exp(x).
- exp(0)=1.
- Pour tout réel x, exp(x) > 0 (voir démonstration).

B) Propriétés algébriques

Relation fonctionnelle caractéristique

Pour tous réels a et b, exp(a+b) = exp(a) + exp(b)

Conséquences

Pour tous réels a et b, et tout entier relatif n,

$$exp(-b) = \frac{1}{exp(b)} \left| exp(a-b) = \frac{exp(a)}{exp(b)} \right| exp(na) = (exp(a))^n$$

C) Nombre e. Notation e^x .

• Le nombre exp(1) est noté e et on $a: e \approx 2,718$

En prenant a=1 la dernière relation donne : $\forall n \in \mathbb{Z}$, $exp(n)=e^n$

• Pour tout réel x, on note $exp(x) = e^x$

Ainsi, les propriétés précédemment établies s'écrivent maintenant : $e^0 = 1$ et $e^1 = e$. Pour tout réel x, $e^x > 0$

Pour tous réels a et b, et tout entier relatif n

$$e^{a+b} = e^{a} \times e^{b}$$

$$e^{-b} = \frac{1}{e^{b}}$$

$$e^{a-b} = \frac{e^{a}}{e^{b}}$$

$$e^{na} = (e^{a})^{n}$$

D) <u>Equation différentielle y' = a y (a réel non nul)</u> <u>Théorème</u>

Soit a un réel donné.

Les solutions de l'équation différentielle y' = ay sont les fonctions f

définies dans \mathbb{R} par : $f(x) = k e^{a x}$ où k est un réel quelconque.

Pour tout couple (x_0, y_0) de réels donnés, cette équation admet <u>une et une</u> seule solution f telle que $f(x_0) = y_0$.

whatsapp: 0604488896

- E) <u>Variations et courbe de la fonction</u> $x \mapsto e^{x}$.
 - 1- La fonction exp est définie sur IR
- 2- La fonction exp est dérivable sur IR et

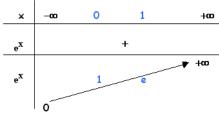
$$exp'(x) = e^x$$

Or $e^x > 0$ pour tout réel x donc la fonction exp est strictement croissante sur IR.

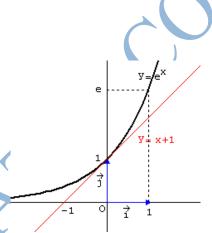
$$\lim_{\mathsf{x}\to-\infty}e^{\mathsf{x}}=0$$

$$et \quad \lim_{x \to +\infty} e^x = +\infty$$

4- T.D.V



- 5- Courbe représentative (C_{exp})
 - l'axe des abscisses est asymptote à $\left(C_{\text{exp}}\right)$ en $-\infty$.
 - La fonction $x \mapsto x+1$ est la meilleure approximation affine de la fonction exp au voisinage de 0.



whatsapp: 0604488896

F) Equations et inéquations.

ullet La fonction exp étant strictement croissante sur $\mathbb R\,$: pour tous réels a et b:

$$e^a > e^b \iff a > b$$

$$e^a = e^b \Leftrightarrow a = b$$

G) Des limites à connaître.

$$\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$$

$$\lim_{x \to -\infty} x e^x = 0$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

H) Croissances comparées des fonctions exponentielle et puissance.

Théorème

Pour tout entier strictement positif n,

$$\lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty$$

$$\lim_{x \to -\infty} x^{\mathsf{n}} e^x = 0$$

« à l'infini, l'exponentielle de x l'emporte sur toute puissance de x »

I) Fonction composée exp o u.

Dérivée de exp₀ u

Théorème:

Si u est une fonction dérivable sur un intervalle I, alors la fonction composée e^u est dérivable sur I et :

$$\left(e^{u}\right)'=u'e^{u}$$

Primitive de u'e^u

<u>Théorème</u>: si u est une fonction dérivable sur un intervalle I, alors

une primitive de u'e^u sur I est e^u

J) Equation différentielle y' = ay + b (a réel non nul, b réel)

Théorème

Soit a et b des réels donnés, avec $a \neq 0$.

Les solutions de l'équation différentielle y' = ay + b sont les

fonctions f définies dans \mathbb{R} par : $f(x) = k e^{ax} - \frac{b}{a}$ où k est un réel quelconque.

Pour tout couple (x_0, y_0) de réels donnés, cette équation admet <u>une et une seule</u> solution f telle que $f(x_0) = y_0$

<u>www.guessmaths.co</u> <u>E-mail</u>: <u>abdelaliguessouma@gmail.com</u> <u>whatsapp</u>: 0604488896

المائدان اندان انداندان انداندان انداندان انداندان انداندانداندان انداندان اندان اندانه اندان والمائدان اندان المائدان ا