

FONCTIONS COSINUS ET SINUS

1^{er} Bac Sc.Exp

sin)

N(x)

I. Rappels

1) Définitions :

Dans le plan muni d'un repère orthonormé $(O; \vec{i}; \vec{j})$ et orienté dans le sens direct, on

considère un cercle trigonométrique de centre O.

Pour tout nombre réel x, considérons le point N de la droite orientée d'abscisse x.

 \grave{A} ce point, on fait correspondre un point M sur le cercle trigonométrique.

On appelle \hat{H} et K les pieds respectifs des perpendiculaires à l'axe des abscisses et à l'axe des ordonnées passant par M.

Définitions :

- Le <u>cosinus du nombre réel</u> x est l'abscisse de M et on note **cos** x.
- Le <u>sinus du nombre réel</u> x est l'ordonnée de M et on note **sin** x.

Propriétés :

Pour tout nombre réel x, on a :

$$1) -1 \le \cos x \le 1$$

2)
$$-1 \le \sin x \le 1$$

$$3)\cos^2 x + \sin^2 x = 1$$

2) Valeurs remarquables des fonctions sinus et cosinus :

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π
$\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1
$\sin x$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0

II. Propriétés des fonctions cosinus et sinus

1) Périodicité

Propriétés:

1)
$$\cos x = \cos(x + 2k\pi)$$
 où k entier relatif

2)
$$\sin x = \sin(x + 2k\pi)$$
 où k entier relatif

Remarque:

On dit que les fonctions cosinus et sinus sont périodiques de période 2π .

Méthode: Résoudre une équation trigonométrique

Résoudre dans \mathbb{R} *l'équation* $\cos^2 x = \frac{1}{2}$.

$$\cos^2 x = \frac{1}{2} \Leftrightarrow \cos^2 x - \frac{1}{2} = 0$$

$$\Leftrightarrow \left(\cos x - \frac{\sqrt{2}}{2}\right) \left(\cos x + \frac{\sqrt{2}}{2}\right) = 0$$

$$\Leftrightarrow \cos x = \frac{\sqrt{2}}{2} \ ou \ \cos x = -\frac{\sqrt{2}}{2}$$

$$\Leftrightarrow \cos x = \cos \frac{\pi}{4} \ ou \ \cos x = \cos \frac{3\pi}{4}$$

Ainsi:
$$S = \left\{ \frac{\pi}{4} + 2k_1\pi; -\frac{\pi}{4} + 2k_2\pi; \frac{3\pi}{4} + 2k_3\pi; -\frac{3\pi}{4} + 2k_4\pi \right\}$$
 avec $k_i \in \mathbb{Z}$

Soit:
$$S = \left\{ \frac{\pi}{4} + \frac{k\pi}{2} \right\}$$
 avec $k \in \mathbb{Z}$.

2) <u>Parité</u>

Propriétés :

Pour tout nombre réel x, on a :

- 1) $\cos(-x) = \cos x$
- 2) $\sin(-x) = -\sin x$

Remarque:

On dit que la fonction cosinus est paire et que la fonction sinus est impaire.

Définitions :

Une fonction f est <u>paire</u> lorsque pour tout réel x de son ensemble de définition D, $\neg x$ appartient à D et f(-x) = f(x).

Une fonction f est <u>impaire</u> lorsque pour tout réel x de son ensemble de définition D, -x appartient à D et f(-x) = -f(x).

Conséquences:

- Dans un repère orthogonal, la courbe représentative de la fonction cosinus est symétrique par rapport à l'axe des ordonnées.
- Dans un repère orthogonal, la courbe représentative de la fonction sinus est symétrique par rapport à l'origine.
- 3) Autres propriétés

<u>Propriétés</u>: Pour tout nombre réel x, on a :

$$\frac{1}{1}\cos(\pi+x) = -\cos x \qquad et \qquad \sin(\pi+x) = -\sin x$$

2)
$$\cos(\pi - x) = -\cos x$$
 et $\sin(\pi - x) = \sin x$

3)
$$\cos\left(\frac{\pi}{2} + x\right) = -\sin x$$
 et $\sin\left(\frac{\pi}{2} + x\right) = \cos x$

4)
$$\cos\left(\frac{\pi}{2} - x\right) = \sin x$$
 et $\sin\left(\frac{\pi}{2} - x\right) = \cos x$

III. <u>Dérivabilité et variations</u>

1) Dérivabilité

Propriété:

Les fonctions cosinus et sinus sont dérivables en 0 et on a: cos'(0) = 0 et sin'(0)=1.

<u>Théorème :</u>

les fonctions cosinus et sinus sont dérivables sur \mathbb{R} et on a : $\cos'(x) = -\sin(x)$ et $\sin'(x) = \cos(x)$

Démonstration :

- Soit x un nombre réel et h un nombre réel non nul.

$$\frac{\cos(x+h) - \cos x}{h} = \frac{\cos x \cos h - \sin x \sin h - \cos x}{h}$$
$$= \cos x \frac{\cos h - 1}{h} - \sin x \frac{\sin h}{h}$$

www.guessmaths.co

E-mail: abdelaliguessouma@gmail.com

whatsapp: 0604488896

Or, cosinus et sinus sont dérivables en 0 de dérivées respectives 0 et 1 donc :

$$\lim_{h \to 0} \frac{\cos h - 1}{h} = 0 \ et \ \lim_{h \to 0} \frac{\sin h}{h} = 1 \ donc \ \lim_{h \to 0} \frac{\cos(x+h) - \cos x}{h} = -\sin x.$$

- Soit x un nombre réel et h un nombre réel non nul.

$$\frac{\sin(x+h) - \sin x}{h} = \frac{\sin x \cos h + \cos x \sin h - \sin x}{h}$$
$$= \sin x \frac{\cos h - 1}{h} + \cos x \frac{\sin h}{h}$$

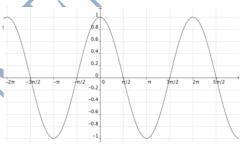
$$Donc \lim_{h\to 0} \frac{\sin(x+h) - \sin x}{h} = \cos x.$$

2) Variations

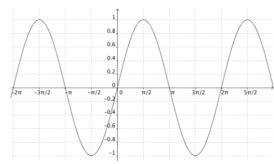
X	0		π
$\cos' x = -\sin x$	0	-	0
$\cos x$	1		- -

х	0		$\frac{\pi}{2}$		π
$\sin' x = \cos x$	1	+	0	-	1
sin x	0		▼ 1		- On

3) <u>Représentations graphiques</u>



Fonction cosinus



Fonction sinus

<u>whatsapp</u> : 0604488896

<u>Méthode :</u>

Etudier une fonction trigonométrique

On considère la fonction f définie sur \mathbb{R} par $f(x) = \cos(2x) - \frac{1}{2}$.

- 1) Etudier la parité de f.
- 2) Démontrer que la fonction f est périodique de période π .
- 3) Etudier les variations de f.
- 4) Représenter graphiquement la fonction f.
- 1) Pour tout x de \mathbb{R} , on a: $f(-x) = \cos(-2x) \frac{1}{2} = \cos(2x) \frac{1}{2} = f(x)$

La fonction f est donc paire. Dans un repère orthogonal, sa représentation graphique est donc symétrique par rapport à l'axe des ordonnées.

2) Pour tout
$$x$$
 de \mathbb{R} , on a :

$$f(x+\pi) = \cos\left(2(x+\pi)\right) - \frac{1}{2}$$
$$= \cos\left(2x + 2\pi\right) - \frac{1}{2}$$
$$= \cos\left(2x\right) - \frac{1}{2} = f(x)$$

On en déduit que la fonction f est périodique de période π .

3) Pour tout
$$x$$
 de \mathbb{R} , on a $f'(x) = -2\sin(2x)$.

Si
$$x \in \left[0; \frac{\pi}{2}\right]$$
, alors $2x \in \left[0; \pi\right]$ et donc $\sin(2x) \ge 0$.

Donc si
$$x \in \left[0; \frac{\pi}{2}\right]$$
, alors $f'(x) \le 0$. Ainsi f est décroissante sur $\left[0; \frac{\pi}{2}\right]$

x CIC	0 $\frac{\pi}{2}$
f'(x)	$\frac{0}{\frac{1}{2}}$
f(x)	$-\frac{3}{2}$

