Devoir Maison Nº 2

Niveau: 2BACSVT

<u>Exercice 1</u>

Soit f la fonction numérique définie sur $[0;+\infty[$ par : $f(x)=x(\sqrt{x}-2)^2$

 $\mathsf{E}t\left(\mathcal{C}_{f}\right)$ sa courbe représentative dans un repère orthonormé $\left(\mathcal{O};\vec{i}\;;\vec{j}\;\right)$

- 1) Etudier les branches infinies de la courbe $\left(\mathcal{C}_{_f}
 ight)$ en + ∞
- 2) Etudier la dérivabilité de f à droite en 0 et interpréter géométriquement le résultat
- 3) Montrer que: $\forall x \ge 0$; $f'(x) = 2(\sqrt{x} 2)(\sqrt{x} 1)$
- 4) Etudier le signe de f'(x) et construire tableau de variation de f.
- 5) Montrer que: $\forall x > 0$; $f''(x) = \frac{2\sqrt{x} 3}{\sqrt{x}}$
- 6) Dresser le tableau de convexité de f et déduire le point d'inflexion de $\left(\mathcal{C}_{f}\right)$
- 7) Déterminer les points d'intersection de (C_f) avec les axes du repère.
- 8) Construire (C_f) dans le repère $(O; \vec{i}; \vec{j})$
- 9) Soit h la Restriction de f sur l'intervalle $I = [4; +\infty[$
 - a) Montrer que h admet une fonction Réciproque h définie sur un intervalle J à Déterminer.
 - b) Construire la courbe $\left(C_{n^{-1}}\right)$

Exercice 2

 $Soit\left(u_{_{n}}\right)la \ suite \ numérique \ définie \ par : \begin{cases} u_{_{0}} = -1 \\ u_{_{n+1}} = -\frac{3u_{_{n}} + 8}{2u_{_{n}} + 5} \end{cases}; \forall n \in \mathbb{N}$

- 1) Montrer que: $\forall n \in \mathbb{N}$; $-2 < u_n \le -1$
- 2) Etudier la variation de (u_n) .
- 3) Montrer que (u_n) convergente et calculer $\lim_{n\to+\infty} u_n$

www.guessmaths.co E-mail: abdelaliguessouma@gmail.com WhatsApp: 0717467136

4) Montrer que $\frac{1}{2+u_{n+1}} = \frac{1}{2+u_n} + 2$; pour tout $n \in \mathbb{N}$.

5) Exprimer u_n en fonction de n et retrouver $\lim_{n\to+\infty} u_n$

Exercice 3

- I. Soit fla fonction définie par : $f(x) = \frac{1}{2}\sqrt{3+x^2}$
- 1) Etudier la variation de f sur \mathbb{R}^+ .
- 2) Résoudre dans \mathbb{R} l'équation f(x) = x
- 3) Montre que: $\forall x \in [0;1[;f(x)>x]$
- II. Soit (u_n) la suite numérique définie par : $\begin{cases} a_0 = 0 \\ a_{n+1} = f(a_n) \end{cases}; \forall n \in \mathbb{N}$
- 1) Montrer que $\forall n \in \mathbb{N}$; $0 < u_n \le 1$
- 2) Montrer que (u_n) est strictement croissante
- 3) Montrer que (u_n) est convergente et calculer $\lim_{n\to +\infty} u_n$
- III. Soit (V_n) une suite numérique définie par : $\forall n \in \mathbb{N}$; $V_n = u_n^2 1$
- 1) Montrer que (V_n) est une suite géométrique et déterminé sa raison et V_0 son premier terme.
- 2) Exprimer V_n en fonction de n et déduire L'expression de u_n
- 3) Retrouver $\lim_{n\to +\infty} a_n$

www.guessmaths.co E-mail: abdelaliguessouma@gmail.com WhatsApp: 0717467136