

Exercice 1

On considère l'application $f: \mathbb{R} \to IR$ définie par $f(x) = \frac{2x}{x^2 + 1}$

- 1) Vérifier que f est ni injective, ni surjective
- 2) Montrer que f(IR) = [-1,1]
- 3) Montrer que l'application $g: [-1,1] \rightarrow [-1,1]$ $x \rightarrow f(x)$ est une bijection

Exercice 2

On considère l'application : $f: \mathbb{R} \to \mathbb{R}$

Montrer que f est injective et non surjective.

Exercice 3

 $f: \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}^+$ Soit l'application: $(x,y) \rightarrow \sqrt{x} + \sqrt{y}$

1) Montrer que f est non injective.

Montrer que f est surjective.

Exercice 4

On considère l'application : $f:]-\infty,0] \rightarrow [-1,2[$ $x \rightarrow \frac{2x^2-1}{x^2+1}]$

Montrer que f est une bijection et déterminer la bijection réciproque f^{-1}

Exercice 5

On considère l'application : $f:[1,+\infty[\rightarrow]0,\sqrt{3}]$ $x \rightarrow \sqrt{x+2} - \sqrt{x-1}$

Montrer que f est une bijection et déterminer la bijection réciproque f^{-1}

Exercice 6

Soit l'application: $f: \mathbb{R}^2 \to \mathbb{R}^+$ $(x,y) \to |3x - 2y|$

Montrer que f est surjective et non injective.

Exercice 7

Soit l'application : $f: \mathbb{R} \to \mathbb{R}$ $x \rightarrow x(1+|x|)$

Montrer que f est une bijection et déterminer la bijection réciproque f^{-1} .

<u>Exercice 8</u>

<u>E-mail</u>: <u>abdelaliguessouma@gmail.com</u>

Soit l'application:

$$f: \left[-1, +\infty\right[\to \mathbb{R} \atop x \mapsto 2\sqrt{x+1} - x\right]$$

1) a/Vérifier que : $(\forall x \in [-1, +\infty[) \ 2 - f(x) = (\sqrt{x+1} - 1)^2$.

b/En déduire que f n'est pas surjective.

2) a/Résoudre dans l'intervalle $[-1,+\infty]$ l'équation f(x)=1. *b*/ *f* est-elle injective?

3) Soit l'application:

$$g: [0, +\infty[\to] -\infty, 2]$$
$$x \to 2\sqrt{x+1} - x$$

Montrer que g est une bijection et déterminer la bijection réciproque g^{-1} .

Exercice 9

Montrer qu'il n'existe pas d'application injective définie de $\mathbb R$ vers $\mathbb R$ vérifiant :

$$(\forall x \in \mathbb{R}): f^2(x) - 8f(x^2) + 16 = 0$$

Exercice 10

Soient les deux applications $f: E \to F$ et $g: F \to G$. Montrer que:

(1)
$$g \circ f$$
 injective $\Rightarrow f$ injective

(2)
$$g \circ f$$
 surjective $\Rightarrow g$ surjective

Exercice 11

Soit l'application :
$$f: \mathbb{Z} \times [0,1] \to \mathbb{R}$$
$$(n,x) \to n+x$$

$$(n,x) \rightarrow n+x$$

Montrer que f est injective.

Exercice 12

Soit $f: E \to F$ une application.

Montrer que : f est injective si et seulement si $\forall A \in P(E), \forall B \in P(E), f(A \cap B) = f(A) \cap f(B)$