

Série nº4 «Exercices sur Dérivation »

Terminal S

Exercices 1 : Tangente parallèle à une droite donnée

On considère la fonction f définie sur \mathbb{R} par : $f(x) = \frac{(1-x)^3}{1+x^2}$. On note (C) la courbe représentative de f.

- □ 1) Peut-on trouver des points de (C) où la tangente à (C) est parallèle à la droite Δ □ Δ 1 d'équation y = -x + 4?
- Dans l'affirmative, préciser le nombre de ces points et leur abscisses.

Correction

- □ 1) Pour trouver des points de (C) où la tangente à (C) est parallèle à la droite Δ □ d'équation y = -x + 4; il faut que le nombre dérivée de chacune de ces points soit égale à -1□ Ceci revient à résoudre l'équation f'(x) = -1
 - 2) Pour tout $x \in \mathbb{R}$; on $a: f'(x) = \frac{-3(1-x)^2(1+x^2)-2x(1-x)^2}{(1+x^2)^2}$ $= \frac{\left(-3(1+x^2)-2x(1-x)\right)(1-x)^2}{(1+x^2)^2}$ $= \frac{\left(-3-3x^2-2x+2x^2\right)(1-x)^2}{(1+x^2)^2}$ $= \frac{\left(-x^2-2x-3\right)(1-x)^2}{(1+x^2)^2}$ $= \frac{-\left(x^2+2x+3\right)(1-x)^2}{(1+x^2)^2}$

Donc f'(x) = -1 est équivant à $\frac{-(x^2 + 2x + 3)(1 - x)^2}{(1 + x^2)^2} = -1$

équivaut à
$$(x^2 + 2x + 3)(1-x)^2 = (1+x^2)^2$$

www.guessmaths.co <u>E-mail</u>: <u>abdelaliguessouma@gmail.com</u>

<u>WhatsApp</u>: 0717467136

equivaut à
$$(x^2 + 2x + 3)(1 - 2x + x^2) = 1 + 2x^2 + x^4$$

equivaut à $(x^2 + 2x + 3)(1 - 2x + x^2) = 1 + 2x^2 + x^4$
equivaut à $(x^2 + 2x + 3)(1 - 2x + x^2) = 1 + 2x^2 + x^4$
equivaut à $(x^2 + 2x + 3)(1 - 2x + x^2) = 1 + 2x^2 + x^4$
equivaut à $(x^2 + 2x + 3)(1 - 2x + x^2) = 1 + 2x^2 + x^4$

équivaut à
$$(x^2 + 2x + 3)(1 - 2x + x^2) = 1 + 2x^2 + x^4$$

équivaut à

$$x^{2} = 2x^{3} + x^{4} + 2x = 4x^{2} + 2x^{3} + 3 - 6x + 3x^{2} = 1 + 2x^{2} + x^{4}$$

équivaut à $3-4x=1+2x^2$

équivaut à $2x^2 + 4x - 2 = 0$

équivaut à $x^2 + 2x - 1 = 0$

équivaut à $(x+1)^2 - 2 = 0$

équivaut à $(x+1-\sqrt{2})(x+1+\sqrt{2})=0$

équivaut à $x = -1 + \sqrt{2}$ ou $x = -1 - \sqrt{2}$

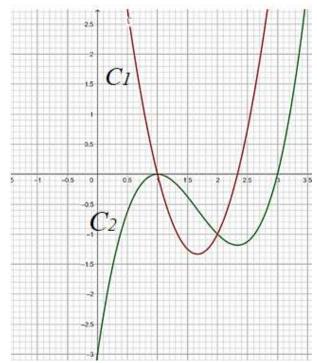
D'où le nombre des points de (C) où la tangente à (C) est parallèle à la droite Δ □ d'équation y = -x + 4 est deux d'abscisses respectives $x_1 = -1 + \sqrt{2}$ et $x_2 = -1 - \sqrt{2}$

Exercices 2 : Reconnaitre la courbe de f et f' - équation de tangente

On a tracé deux courbes C_1 et C_2 .

N

L'une est la courbe d'une fonction f dérivable sur $\mathbb R$. L'autre est la courbe de sa dérivée $\mathbb R$.



- 1) Associer à chaque courbe, la fonction qui lui correspond en justifiant.
- 2) A l'aide du graphique, déterminer une équation de chacune des tangentes à la courbe de f aux points d'abscisse 1 et d'abscisse 2

<u>www.guessmaths.co</u> <u>E-mail</u>: <u>abdelaliguessouma@gmail.com</u>

Correction

- $\overline{\square}$ 1) On lit bien sur le graphe que quand la courbe C_2 est croissante la courbe C_1 est au-dessus de l'axe des abscisses et quand la courbe C_2 est décroissante la courbe C_1 est au-dessous de \blacksquare l'axe des abscisses d'où on conclut que C_2 est la courbe de la fonction et C_1 celle de la 🗖 dérivée.
 - 2) On lit sur le graphique que : $\blacktriangleright f(1) = 0$ et f'(1) = 0; donc une équation de la tangente au point d'abscisse 1 est y = 0
 - ► f(2) = -1 et f'(2) = -1; donc une équation de la tangente au point d'abscisse 1 est y = -(x-2)+1

$$g(x) = \frac{1}{x}$$

Exercices 3 Tangente commune à 2 courbes

Soit f la fonction définie $sur\mathbb{R}$ $par: f(x) = x^2$ et g la fonction définie $sur\mathbb{R} \setminus \{0\}$ par: $g(x) = \frac{1}{x}$.

L'objectif de ce problème est de montrer que les courbes de f et g admettent une tangente commune dont on donnera une équation. On notera C_f la courbe de f et C_g la courbe de g.

- 1) Déterminer une équation de la tangente à C_f au point d'abscisse a.
- 2) Déterminer une équation de la tangente à C_g au point d'abscisse b.
- 3) Démontrer que l'existence d'une tangente commune revient à résoudre $\begin{cases} 2a = -\frac{1}{b^2} \\ -a^2 = \frac{2}{a} \end{cases}$
- 4) Justifier que l'équation $x^3 = -8$ admet une unique solution sur \mathbb{R} . Donner la valeur de cette solution.

Correction

- 1) Une équation de la tangente à C_f au point d'abscisse a est : y = f'(a)(x-a) + f(a) $=2a(x-a)+a^2.$ $=2ax-2a^2+a^2$.
- 2) Une équation de la tangente à C_g au point d'abscisse b est : y = g'(b)(x-b) + g(b)

www.guessmaths.co <u>E-mail</u>: <u>abdelaliguessouma@gmail.com</u>

$$= -\frac{1}{b^2}(x-b) + \frac{1}{b}.$$

$$= -\frac{1}{b^2}x + \frac{1}{b} + \frac{1}{b}.$$

$$= -\frac{1}{b^2}x + \frac{2}{b}.$$

3) L'existence d'une tangente commune veut dire qu'il y a égalité des équations des deux

tangente donc revient à résoudre $2ax - a^2 = -\frac{1}{b^2}x + \frac{2}{b}$ donc $\begin{cases} 2a = -\frac{1}{b^2} \\ -a^2 = \frac{2}{b} \end{cases}$

<u>www.guessmaths.co</u> <u>E-mail</u>: <u>abdelaliguessouma@gmail.com</u>