

Série n° 2 d'exercices corrigés « Fonction Logarithmique »

Exercice n°1.

Etudier le signe des expressions suivantes :

$$A(x) = \ln x (\ln x + 1)$$

$$B(x) = 2x \ln(1-x)$$

$$C(x) = -x^2 \ln(x+1)$$

Correction Exercice n°1.

■ $A(x) = \ln x(\ln x + 1)$ On étudiera le signe A(x) sur $D_A =]0; +\infty[$ Tableau de signe de A(x)

X	0	1 :	1 + 00
ln x+1	II -	0 +	+
ln x	-	_ ()
A(x)	+ (j — (+

■ $B(x) = 2x \ln(1-x)$ On étudiera le signe B(x) sur $D_A =]-\infty;1[$

Tableau de signe de B(x)

X	00	0		1
2x	ı	Q	+	
ln(1-x)	+	0	-	
B(x)	_	q	_	

 $\blacksquare C(x) = -x^2 \ln(x+1)$ On étudiera le signe B(x) sur D_A

Tableau de signe de C(x)

х	-1	0		+60
-x ²	-	ø	_	
ln(x+1)	-	ģ	+	
C(x)	+	ø	_	

Exercice n°2.

Déterminer l'ensemble de définition des fonctions suivantes :

1)
$$f(x) = \ln(x^2 + 3x - 4)$$

1)
$$f(x) = \ln(x^2 + 3x - 4)$$
 2) $f(x) = \ln\left(\frac{4 - x^2}{x}\right)$

3)
$$f(x) = \ln(4 - x^2) - \ln x$$

4)
$$f(x) = \ln(x^2 - 4) - \ln(-x)$$

Correction Exercice n°2.

1)
$$f(x) = \ln(x^2 + 3x - 4)$$

 $x \in D$ $\Leftrightarrow x^2 + 3x - 4 > 0$ en cherchant les racines du polynôme $P(x) = x^2 + 3x - 4$ on obtient le tableau de signe suivant :

		0			
X	- 00	-4	1		+ 00
$x^2 + 3x - 4$	÷	4 .	. þ	+	

$$D'où: \ \boxed{D_f = \left] -\infty; -4 \left[\ \cup \ \right] 1; +\infty \left[\ \right]}$$

$$2) \ f(x) = \ln\left(\frac{4 - x^2}{x}\right)$$

E-mail: abdelaliguessouma@gmail.com

<u>whatsapp</u>: 0604488896

Х	- 00	-2	0	2		+,00
x		-			+	
4-x2	-	ģ	+	þ	-	
$\frac{4-x^2}{x}$	÷	0		+ 0	-	

Etudions le signe de $\frac{4-x^2}{x}$

$$D'où$$
: $D_f =]-\infty; -2[\cup]0; 2[$

3)
$$f(x) = \ln(4-x^2) - \ln x$$

$$x \in D_f \Leftrightarrow 4 - x^2 > 0 \text{ et } x > 0$$

Х	-00	-2	0	2		+.00
x	XXXX	XXXXX	(X)		+	
$4 - x^2$	-	q	+	þ	-	

$$D'o\grave{u}: \boxed{D_f = \left]0;2\right[}$$

4)
$$f(x) = \ln(x^2 - 4) - \ln(-x)$$

х	-00	-2 .	0	2		+.00
Х	+		ŀΧ	XXXXX	XXXXX	XX
$x^{2} - 4$	+	ģ	-	þ	+	

$$x \in D_f \iff x^2 - 4 > 0 \text{ et } x < 0$$

D'où :
$$D_f = -\infty; -2$$

Exercice n°3.

Déterminer les limites suivantes :

1)
$$\lim_{x \to +\infty} (x^2 + \ln x)$$

2)
$$\lim_{x\to +\infty} (\ln 2 - 3\ln x)$$

$$3) \lim_{x \to -\infty} \ln x^2$$

4)
$$\lim_{x \to +\infty} (x - \ln x)$$

5)
$$\lim_{x \to +\infty} ((1-x) \ln x)$$

6)
$$\lim_{x \to 0^+} (x - 4 + \ln x)$$

7)
$$\lim_{x \to +\infty} \left(x \ln \left(1 + \frac{1}{x} \right) \right)$$

1)
$$\lim_{x \to +\infty} (x^2 + \ln x)$$
 2) $\lim_{x \to +\infty} (\ln 2 - 3 \ln x)$ 3) $\lim_{x \to -\infty} \ln x^2$ 4) $\lim_{x \to +\infty} (x - \ln x)$ 5) $\lim_{x \to +\infty} ((1-x)\ln x)$ 6) $\lim_{x \to 0^+} (x - 4 + \ln x)$ 7) $\lim_{x \to +\infty} \left(x \ln \left(1 + \frac{1}{x}\right)\right)$ 8) $\lim_{x \to 0} \left(\frac{\ln (1 + 2x)}{x}\right)$

Correction Exercice n°3.

1)
$$\lim_{x \to +\infty} \left(x^2 + \ln x \right) = +\infty$$

Par somme des deux limites $\lim_{x \to +\infty} (x^2) = +\infty$ et $\lim_{x \to +\infty} (\ln x) = +\infty$

2)
$$\lim_{x \to +\infty} (\ln 2 - 3 \ln x) = -\infty$$

3)
$$\lim_{x \to \infty} \ln x^2 = +\infty$$
 On pose $t = x^2$ et on utilise $\lim_{t \to +\infty} \ln t = +\infty$

4)
$$\lim_{x \to +\infty} (x - \ln x) = \lim_{x \to +\infty} \left(x \left(1 - \frac{\ln x}{x} \right) \right) = +\infty$$
 $car \lim_{x \to +\infty} \left(\frac{\ln x}{x} \right) = 0$

5)
$$\lim_{x \to +\infty} ((1-x) \ln x) = -\infty$$

On $a \lim_{x \to +\infty} (1-x) = -\infty$ et $\lim_{x \to +\infty} (\ln x) = +\infty$ par produit on obtient $-\infty$.

6)
$$\lim_{x\to 0^+} (x-4+\ln x) = -\infty$$

On a
$$\lim_{x\to 0^+} x = 0$$
 et $\lim_{x\to 0^+} \ln x = -\infty$

7)
$$\lim_{x \to +\infty} \left(x \ln \left(1 + \frac{1}{x} \right) \right) = F.I\left(+\infty \times 0 \right)$$

On pose:
$$X = \frac{1}{x} \quad x \mapsto +\infty \quad alors \quad X \mapsto 0^+ \quad donc$$
:

$$\lim_{x \to +\infty} \left(x \ln \left(1 + \frac{1}{x} \right) \right) = \lim_{X \to 0^+} \left(\frac{1}{X} \ln \left(1 + X \right) \right)$$
$$= \lim_{X \to 0^+} \frac{\ln \left(1 + X \right)}{X} = 1$$

$$d'où$$
: $\lim_{x\to+\infty} \left(x \ln\left(1+\frac{1}{x}\right)\right) = 1$

8)
$$\lim_{x \to 0} \left(\frac{\ln(1+2x)}{x} \right) = F.I \left(\frac{0}{0} \right)$$

On pose:
$$X = 2x \ x \mapsto 0 \ alors \ X \mapsto 0 \ donc$$

$$\lim_{x \to 0} \left(\frac{\ln(1+2x)}{x} \right) = \lim_{X \to 0} \left(2 \times \frac{\ln(1+X)}{X} \right)$$
$$= \lim_{X \to 0} \left(2 \times \frac{\ln(1+X)}{X} \right) = 2$$

$$car \lim_{X\to 0} \frac{\ln(1+X)}{X} = 1$$

www.guessmaths.co

<u>E-mail</u>: <u>abdelaliguessouma@gmail.com</u>

whatsapp: 0604488896