« Produit scalaire et ses applications à la droite dans le plan »

Exercice 1

Soit ABC un triangle rectangle et isocèle de sommet A et soit I le milieu de [BC], M un point de la droite (BC); P et Q sont les projetés orthogonaux respectifs du point M sur (AB) et (AC).

En choisissant un repère orthonormé convenable, montrer analytiquement que :

- 1) Les droites (IP) et (IQ) sont perpendiculaires
- 2) Le point I appartient à la médiatrice du segment [PQ].

Méthode 1

Pour étudier, analytiquement quelques propriétés géométriques, en utilisant le produit scalaire, on peut:

- 1) Choisir un repère orthonormé, facilitant la détermination des coordonnées des points liés à la figure.
- 2) Déterminer les coordonnées des points et quelques vecteurs associés à la figure et à la propriété visée.
- 3) Appliquer l'expression analytique du produit scalaire pour démontrer l'orthogonalité de deux vecteurs ou pour le calcul de quelques distances ou pour déterminer l'équation d'une droite perpendiculaire à une autre.

C.- choix d'un repère

On $a:(AB)\perp(AC)$ et AB=AC, donc on peut choisir le repère $(A;\vec{i};\vec{j})$ tel que: $\overrightarrow{AB}=\overrightarrow{ai}$ et $\overrightarrow{AC}=\overrightarrow{aj}$ où a>0; $\|\vec{i}\|=\|\vec{j}\|=1$ et par suite le repère $(A;\vec{i};\vec{j})$ est orthonormé.

On a: A(0;0); B(a;0); C(0;a) et $C\left(\frac{a}{2}; \frac{a}{2}\right)$ milieu de [BC]).

- En posant M(m;n), on obtient P(m;0) et Q(0;n) (P et Q sont les projetés orthogonaux de M sur les axes du repère) et par suite : $\overrightarrow{IP}\left(m-\frac{a}{2};-\frac{a}{2}\right)$ et $\overrightarrow{IQ}\left(-\frac{a}{2};n-\frac{a}{2}\right)$
- 1) Montrons, analytiquement, que les droites (IP) et (IQ) sont perpendiculaires Calculons le produit scalaire \overrightarrow{IP} . \overrightarrow{IQ} .

On a:
$$\overrightarrow{IP}$$
. $\overrightarrow{IQ} = \left(m - \frac{a}{2}\right)\left(-\frac{a}{2}\right) + \left(-\frac{a}{2}\right)\left(n - \frac{a}{2}\right)$
$$= -\frac{a}{2}\left(m - \frac{a}{2} + n - \frac{a}{2}\right)$$
$$= -\frac{a}{2}(m + n - a)$$

• Montrons que : x+y-a=0 est une équation de la droite (BC)

On a le vecteur $\vec{n}(1;1)$ est un vecteur normal à la droite (BC) car \overrightarrow{BC} . $\vec{n} = \begin{pmatrix} -a \\ a \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 0$

Soit H(x; y) un point de la droite (BC); donc \overrightarrow{BH} . $\overrightarrow{n} = 0$.

Donc:
$$\begin{pmatrix} x-a \\ y \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 0 \Rightarrow x+y-a=0$$
.

D'où: x+y-a=0 est une équation de la droite (BC)

Puisque $M \in (BC)$ alors m+n-a=0 d'où \overrightarrow{IP} . \overrightarrow{IQ} .

Ce qui prouve que les droites (IP) et (IQ) sont perpendiculaires.

2) Montrons que I est un point de la médiatrice du segment[PQ].

Calculons IP et IQ

On
$$a$$
:
$$\begin{cases} IP^2 = \left(m - \frac{a}{2}\right)^2 + \left(-\frac{a}{2}\right)^2 \\ IQ^2 = \left(-\frac{a}{2}\right)^2 + \left(n - \frac{a}{2}\right)^2 \end{cases}$$
$$IP^2 = m^2 - am + \frac{a^2}{a}$$

Donc:
$$\begin{cases} IP^{2} = m^{2} - am + \frac{a^{2}}{2} \\ IQ^{2} = n^{2} - an + \frac{a^{2}}{2} \end{cases}$$

et on sait que m+n-a=0 m=a-n et par suite : $IP^2 = (a-n)^2 - a(a-n) + \frac{a^2}{2} = n^2 - an + \frac{a^2}{2}$

il en résulte que $IP^2 = IQ^2$ d'où IP = IQ .

Ce qui prouve que I est un point de la médiatrice du segment[PQ].

Exercice résolu 2

Déterminer une équation d'une droite passant par un point et perpendiculaire à une droite donnée. Dans le plan rapporté à un repère orthonormé $(O; \vec{i}; \vec{j})$ on considère les points A(5;0) et B(2;6).

Déterminer une équation de la droite (D) passant par A et perpendiculaire à la droite (OB).

<u>Remarque</u>

La droite (D) passant par un point A et perpendiculaire à une droite (Δ) est la droite passant par A et qui admet pour vecteur normal un vecteur directeur de (Δ) .

Donc pour déterminer une équation : $\alpha x + \beta y + \delta = 0$ de la droite (D) passant par A et perpendiculaire à la droite (Δ) définie par deux points B et C ou par une équation du type : ax + by + c = 0, on peut suivre l'une des deux méthodes suivantes :

Méthode 1

Déterminer un vecteur normal n à (D): $\vec{n} = \overrightarrow{BC}$ dans le cas où $(\Delta) = (BC)$ ou $\vec{n}(-b, a)$ dans le cas où ax + by + c = 0 est une équation de (Δ) .

- Considèrer un point M(x; y) du plan.
- Calculer le produit scalaire \overrightarrow{AM} . \overrightarrow{n} .
- Déterminer une équation de (D) à partir de l'équivalence : $M \in (D) \Leftrightarrow \overrightarrow{AM}$. $\overrightarrow{n} = 0$.

Méthode 2

. Déterminer le couple de coordonnées $(\alpha; \beta)$ d'un vecteur \vec{n} normal à (D): $\vec{n} = \overrightarrow{BC}$ dans le cas où (BC) ou $\vec{n}(-b, a)$ dans le cas où (Δ) : ax + by + c = 0.

Déterminer δ en utilisant $A \in (D)$.

Correction

- Déterminons une équation de la droite (D) passant par A et perpendiculaire $\grave{a}(OB)$.
- .On utilise la méthode 1:
- On a: \overrightarrow{OB} est un vecteur normal à (D)
- Soit M(x; y) un point du plan.

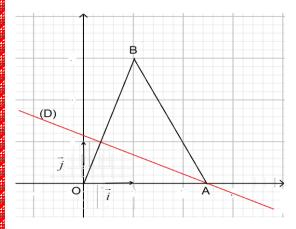
Donc:
$$\overrightarrow{AM}$$
. $\overrightarrow{OB} = (x-5) \times 2 + (y-0) \times 6$

d'où
$$\overrightarrow{AM}$$
. $\overrightarrow{OB} = 2x + 6y - 10$ et par suite: $M \in (D) \Leftrightarrow x + 3y - 5 = 0$

ce qui veut dire que:
$$x+3y-5=0$$
 est une équation de (D)

Utiliser la méthode 2, pour déterminer de nouveau, une équation de x+3y-5=0

<u>Schéma</u>



Exercice 3

Déterminer une équation de la médiatrice d'un segment En utilisant les mêmes données de l'exercice n^2 . Déterminer une équation de(L), médiatrice du segment [AB].

Méthode 3

- on peut procédé de deux façons :
- déterminer une équation de la droite passant par le milieu du segment [AB] et perpendiculaire à la droite (AB) en utilisant l'une des méthodes citées dans l'exercice résolu n°2.
- traduire, analytiquement, la propriété caractéristique de la médiatrice (L) du segment [AB], c'est-à-dire : $M \in (L) \Leftrightarrow AM = BM$.

Correction

- Déterminons une équation de (L) médiatrice du segment [AB].
- Soit M(x; y) un point du plan.
- On a: $M \in (L) \Leftrightarrow AM = BM$ et on sait que : $AM = BM \Leftrightarrow AM^2 = BM^2$
- donc: $M \in (L) \Leftrightarrow (x-5)^2 + (y-0)^2 = (x-2)^2 + (y-6)^2$
- puisque $(x-5)^2 + (y-0)^2 = x^2 + y^2 + 25 10x$ et $(x-2)^2 + (y-6)^2 = x^2 + y^2 4x 12y + y 4x 12y + 12x 12y 12x 12y + 12x 12y 12x 12y 12x 12y 12x 12x$
- alors: $M \in (L) \Leftrightarrow 6x 12y + 15 = 0.D$ 'où (L): 6x 12y + 15 = 0.

Exercice 4

- Déterminer les coordonnées du projeté orthogonal d'un point sur une droite
- Déterminer la distance d'un point à une droite

En utilisant les mêmes données de l'exercice n°2:

- 1) Déterminer les coordonnés de H projeté orthogonal du point A sur la droite(OB).
- 2) En déduire la distance du point A à la droite (OB).

Méthode 4

Pour déterminer les coordonnées du point H, projeté orthogonal du point A sur une droite (D), on peut suivre les étapes :

- Déterminer une équation de (D);
- Déterminer une équation ou une représentation paramétrique de la droite (Δ) passant par A et perpendiculaire à la droite (D).
- •Déterminer les coordonnées du point H, en tant que point d'intersection des droites (D) et (Δ) (Solution d'un système de deux équations...).

Solution

- 1) Déterminons les coordonnés de H.
- Equation de la droite (OB): y = 3x
- Equation de la droite (D) perpendiculaire à (OB) et passant par A.

Selon l'exercice n° 2 on a:(D):x+3y-5=0

La résolution du système $\begin{cases} x+3y-5=0\\ y=3x \end{cases}$ conduit à $(x,y)=\left(\frac{1}{2},\frac{3}{2}\right)$

et par suite : $\left(\frac{1}{2}; \frac{3}{2}\right)$ est le couple de coordonnées de H.

2) Déduction de la distance du point A à la droite (OB).

On sait que H est le projeté orthogonal du point A sur(OB), donc d(A;(OB)) = AH et puisque

$$AH = \sqrt{\left(\frac{1}{2} - 5\right)^2 + \left(\frac{3}{2} - 0\right)^2} \ alors \ d\left(A; (OB)\right) = \frac{3}{2}\sqrt{10}$$